Quantitative Stability Analysis for Distributionally Robust Optimization with Moment Constraints

In this paper we consider a broad class of distributionally robust optimization (DRO) problems where the probability of the underlying random variables depends on the decision variables and the ambiguity set is defined through parametric moment conditions with generic cone constraints. Under some moderate conditions, including Slater-type conditions of a cone constrained moment system and Holder continuity of the underlying random functions in the objective and moment conditions, we show local Holder continuity of the optimal value function of the inner maximization problem with respect to (w.r.t.) the decision vector and other parameters in moment conditions, and local Holder continuity of the optimal value of the whole minimax DRO w.r.t. the parameter. Moreover, under the second order growth condition of the Lagrange dual of the inner maximization problem, we demonstrate and quantify the outer semicontinuity of the set of optimal solutions of the minimax DRO w.r.t. variation of the parameter. Finally, w...

[1]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[2]  Yongpei Guan,et al.  Data-driven risk-averse stochastic optimization with Wasserstein metric , 2018, Oper. Res. Lett..

[3]  W. Römisch Stability of Stochastic Programming Problems , 2003 .

[4]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[5]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Samer Takriti,et al.  Managing Short-Term Electricity Contracts Under Uncertainty : A Minimax Approach , 2002 .

[7]  Sanjay Mehrotra,et al.  A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization , 2013, SIAM J. Optim..

[8]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[9]  Jie Zhang,et al.  Quantitative stability analysis of stochastic quasi-variational inequality problems and applications , 2017, Math. Program..

[10]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[11]  Michèle Breton,et al.  Algorithms for the solution of stochastic dynamic minimax problems , 1995, Comput. Optim. Appl..

[12]  I︠u︡. V. Prokhorov,et al.  Basic Principles and Applications of Probability Theory , 2004 .

[13]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[14]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[15]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[16]  Huifu Xu,et al.  Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems , 2016, Math. Oper. Res..

[17]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[18]  Morten Riis,et al.  Applying the minimax criterion in stochastic recourse programs , 2005, Eur. J. Oper. Res..

[19]  Yongchao Liu,et al.  Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods , 2017, Mathematical Programming.

[20]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[21]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[22]  K. Athreya,et al.  Measure Theory and Probability Theory , 2006 .

[23]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[24]  G. Pflug,et al.  Approximations for Probability Distributions and Stochastic Optimization Problems , 2011 .

[25]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[26]  J. Dupacová Uncertainties in minimax stochastic programs , 2011 .

[27]  M. Breton,et al.  A scenario aggregation algorithm for the solution of stochastic dynamic minimax problems , 1995 .