Two field multibody method for periodic homogenization in fracture mechanics of nonlinear heterogeneous materials

This paper presents a new computational approach dedicated to the fracture of nonlinear heterogeneous materials. This approach extends the standard periodic homogenization problem to a two field cohesive-volumetric finite element scheme. This two field finite element formulation is written as a generalization Non-Smooth Contact Dynamics framework involving Frictional Cohesive Zone Models. The associated numerical platform allows to simulate, at finite strain, the fracture of nonlinear composites from crack initiation to post-fracture behavior. The ability of this computational approach is illustrated by the fracture of the hydrided Zircaloy under transient loading.

[1]  F. Feyel,et al.  Interface debonding models: a viscous regularization with a limited rate dependency , 2001 .

[2]  V. Acary,et al.  Nonsmooth fracture dynamics using a cohesive zone approach , 2006 .

[3]  M. Raous,et al.  Unilateral Contact, Friction and Adhesion: 3D Cracks in Composite Materials , 2002 .

[4]  M. Frémond Adhérence des solides , 1987 .

[5]  Vincent Acary,et al.  Formulation dynamique d'un modèle de zone cohésive tridimensionnel couplant endommagement et frottement , 2001 .

[6]  Gp Smith,et al.  Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4 , 1996 .

[7]  Bert Sluys,et al.  Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces , 2000 .

[8]  M. Jean,et al.  Non-smooth contact dynamics approach of cohesive materials , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  F. Dubois,et al.  Numerical simulation of dynamical fracture in heterogeneous materials , 2005 .

[10]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[11]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[12]  M. Cocu,et al.  A consistent model coupling adhesion, friction, and unilateral contact , 1999 .

[13]  K. Kussmaul,et al.  STRUCTURAL MECHANICS IN REACTOR TECHNOLOGY , 1993 .

[14]  Laurent Stainier,et al.  Simulation numérique de la rupture dynamique des matériaux hétérogènes , 2005 .

[15]  Huajian Gao,et al.  Modern topics and challenges in dynamic fracture , 2005 .

[16]  S. Yamanaka,et al.  Thermal properties of zirconium hydride , 2001 .

[17]  J. Schröder,et al.  Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .

[18]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[19]  E. Sanchez-Palencia,et al.  Comportements local et macroscopique d'un type de milieux physiques heterogenes , 1974 .

[20]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[21]  Tetsushi Matsuda,et al.  Thermal and mechanical properties of zirconium hydride , 1999 .

[22]  J. Schröder,et al.  Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .

[23]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[24]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .