The WiggleZ Dark Energy Survey: probing the epoch of radiation domination using large-scale structure

We place the most robust constraint to date on the scale of the turnover in the cosmological matter power spectrum using data from the WiggleZ Dark Energy Survey. We find this feature to lie at a scale of k_0 = 0.0160^(+ 0.0035)_(− 0.0041) (h Mpc^−1) (68 per cent confidence) for an effective redshift of z_(eff) = 0.62 and obtain from this the first ever turnover-derived distance and cosmology constraints: a measure of the cosmic distance–redshift relation in units of the horizon scale at the redshift of radiation–matter equality (r_H) of D_V(z_(eff) = 0.62)/r_H = 18.3^(+6.3)_(−3.3) and, assuming a prior on the number of extra relativistic degrees of freedom N_(eff) = 3, constraints on the cosmological matter density parameter Ω_M h^2 = 0.136^(+0.026)_(−0.052) and on the redshift of matter–radiation equality z_(eq) = 3274^(+631)_(−1260). We stress that these results are obtained within the theoretical framework of Gaussian primordial fluctuations and linear large-scale bias. With this caveat, all results are in excellent agreement with the predictions of standard ΛCDM models. Our constraints on the logarithmic slope of the power spectrum on scales larger than the turnover are bounded in the lower limit with values only as low as −1 allowed, with the prediction of P(k) ∝ k from standard ΛCDM models easily accommodated by our results. Finally, we generate forecasts to estimate the achievable precision of future surveys at constraining k_0, Ω_M h^2, z_(eq) and N_(eff). We find that the Baryon Oscillation Spectroscopic Survey should substantially improve upon the WiggleZ turnover constraint, reaching a precision on k_0 of ±9 per cent (68 per cent confidence), translating to precisions on Ω_M h^2 and z_(eq) of ±10 per cent (assuming a prior N_(eff) = 3) and on Neff of + 78− 56 per cent (assuming a prior Ω_M h^2 = 0.135). This represents sufficient precision to sharpen the constraints on N_(eff) from WMAP, particularly in its upper limit. For Euclid, we find corresponding attainable precisions on (k_0, Ω_M h^2, N_(eff)) of (3, 4,^(+ 17)_(− 21)) per cent. This represents a precision approaching our forecasts for the Planck Surveyor.

[1]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.

[2]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[3]  S. Brough,et al.  THE WiggleZ DARK ENERGY SURVEY: GALAXY EVOLUTION AT 0.25 ⩽ z ⩽ 0.75 USING THE SECOND RED-SEQUENCE CLUSTER SURVEY , 2012, 1201.1013.

[4]  Scott Croom,et al.  WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies , 2011, 1112.4940.

[5]  A. Melchiorri,et al.  Case for dark radiation , 2011, 1109.2767.

[6]  A. Amara,et al.  Constraining primordial non-Gaussianity with future galaxy surveys , 2011, 1109.0958.

[7]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[8]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies , 2011, 1107.3338.

[9]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[10]  F. Schmidt,et al.  Non-Gaussian Halo Bias Re-examined: Mass-dependent Amplitude from the Peak-Background Split and Thresholding , 2011, 1105.3628.

[11]  F. Schmidt,et al.  Accurate Predictions for the Scale-Dependent Galaxy Bias from Primordial Non-Gaussianity , 2011, 1105.3476.

[12]  Oliver Zahn,et al.  Constraints on neutrino and dark radiation interactions using cosmological observations , 2011, 1105.3246.

[13]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[14]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6 , 2011, 1105.2862.

[15]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[16]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[17]  Jaiyul Yoo General Relativistic Description of the Observed Galaxy Power Spectrum: Do We Understand What We Measure? , 2010, 1009.3021.

[18]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[19]  Matthew Colless,et al.  The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum , 2010, 1003.5721.

[20]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[21]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[22]  T. Giannantonio,et al.  Structure formation from non-Gaussian initial conditions: Multivariate biasing, statistics, and comparison with N -body simulations , 2009, 0911.0017.

[23]  U. Seljak,et al.  Scale-dependent bias induced by local non-Gaussianity: a comparison to N-body simulations , 2008, 0811.2748.

[24]  A. Slosar,et al.  Constraints on local primordial non-Gaussianity from large scale structure , 2008, 0805.3580.

[25]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[26]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[27]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[28]  J. Lesgourgues,et al.  Probing cosmological parameters with the CMB: forecasts from Monte Carlo simulations , 2006, astro-ph/0606227.

[29]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[30]  G. Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005, hep-ph/0506164.

[31]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[32]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[33]  S. Bridle,et al.  Cosmology with photometric redshift surveys , 2004, astro-ph/0411713.

[34]  Y. Jing,et al.  Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004, astro-ph/0409240.

[35]  Oxford,et al.  The 2dF QSO Redshift Survey — XI. The QSO power spectrum , 2003, astro-ph/0302280.

[36]  R. Durrer,et al.  Bias and the Power Spectrum beyond the Turnover , 2002, astro-ph/0211653.

[37]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[38]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[39]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[40]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[41]  R. Cen,et al.  Steps toward the Power Spectrum of Matter. III. The Primordial Spectrum , 1998, astro-ph/9812249.

[42]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[43]  G. Efstathiou,et al.  The power spectrum of rich clusters of galaxies on large spatial scales , 1997, astro-ph/9708259.

[44]  C. Baugh,et al.  The three-dimensional power spectrum measured from the APM Galaxy Survey – II. Use of the two-dimensional power spectrum , 1994 .

[45]  Carlton M. Baugh,et al.  The three-dimensional power spectrum measured from the APM Galaxy Survey – I. Use of the angular correlation function , 1993 .

[46]  R. Scaramella On the agreement between COBE anisotropy results and specific predictions from clusters of galaxies , 1993 .

[47]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[48]  J. Einasto,et al.  Power spectrum of the matter distribution in the Universe on large scales , 1993 .

[49]  John A. Peacock,et al.  The power spectrum of Abell cluster correlations , 1992 .

[50]  J. Peacock,et al.  The large-scale clustering of radio galaxies , 1991 .

[51]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[52]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .