Competition, inhibition, and critical periods of cortical plasticity

Maturation of cortical inhibition just after eye opening is a necessary precedent for the emergence of competitive, experience-dependent ocular dominance plasticity in the visual cortex. What inhibition is doing in this context, though, is not clear. Here I outline new hypotheses on the roles of somatic and dendritic inhibition in the opening and closure of critical periods, and their roles in the competitive processes therein.

[1]  Takao K. Hensch,et al.  Lynx1, a Cholinergic Brake, Limits Plasticity in Adult Visual Cortex , 2010, Science.

[2]  Z. J. Huang Activity‐dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond , 2009, The Journal of physiology.

[3]  Michael P Stryker,et al.  A cortical disinhibitory circuit for enhancing adult plasticity , 2015, eLife.

[4]  L. Maffei,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Perspective Article , 2022 .

[5]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[6]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[7]  G. Parsons‐Smith Activity of the Cerebral Cortex in Amblyopia *† , 1953, The British journal of ophthalmology.

[8]  R. Malach,et al.  Strabismus does not prevent recovery from monocular deprivation: A challenge for simple Hebbian models of synaptic modification , 1989, Visual Neuroscience.

[9]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[10]  J. Horton,et al.  Timing of the Critical Period for Plasticity of Ocular Dominance Columns in Macaque Striate Cortex , 1997, The Journal of Neuroscience.

[11]  Wei-Cheng Chang,et al.  Supplementary Material for Long-range and local circuits for top-down modulation of visual cortical processing , 2014 .

[12]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[13]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[14]  Spencer L. Smith,et al.  Experience-dependent binocular competition in the visual cortex begins at eye opening , 2007, Nature Neuroscience.

[15]  Arianna Maffei,et al.  GABAergic synapses: their plasticity and role in sensory cortex , 2014, Front. Cell. Neurosci..

[16]  J. Fawcett,et al.  Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. , 2010, Brain : a journal of neurology.

[17]  C. Shatz,et al.  PirB Restricts Ocular-Dominance Plasticity in Visual Cortex , 2006, Science.

[18]  C. Levelt,et al.  The Role of GABAergic Inhibition in Ocular Dominance Plasticity , 2011, Neural plasticity.

[19]  Mriganka Sur,et al.  Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation , 2004, Neuron.

[20]  Spencer L. Smith,et al.  Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity. , 2009, Journal of neurophysiology.

[21]  Takao K Hensch,et al.  Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. , 2005, Progress in brain research.

[22]  A. Holtmaat,et al.  Sensory-evoked LTP driven by dendritic plateau potentials in vivo , 2014, Nature.

[23]  Nicoletta Berardi,et al.  Extracellular Matrix and Visual Cortical Plasticity Freeing the Synapse , 2004, Neuron.

[24]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[25]  S. Nelson,et al.  Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation , 2004, Nature Neuroscience.

[26]  Alfredo Fontanini,et al.  Experience-Dependent Switch in Sign and Mechanisms for Plasticity in Layer 4 of Primary Visual Cortex , 2012, The Journal of Neuroscience.

[27]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[28]  Tobias Bonhoeffer,et al.  Lifelong learning: ocular dominance plasticity in mouse visual cortex , 2006, Current Opinion in Neurobiology.

[29]  Nicoletta Berardi,et al.  Reducing Intracortical Inhibition in the Adult Visual Cortex Promotes Ocular Dominance Plasticity , 2010, The Journal of Neuroscience.

[30]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[31]  M. Stryker,et al.  Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons , 2014, Proceedings of the National Academy of Sciences.

[32]  D. Hocking,et al.  An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[34]  M P Stryker,et al.  Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age , 2001, The Journal of comparative neurology.

[35]  Arianna Maffei,et al.  Cannabinoid-dependent potentiation of inhibition at eye opening in mouse V1 , 2014, Front. Cell. Neurosci..

[36]  M. Fagiolini,et al.  Inhibitory threshold for critical-period activation in primary visual cortex , 2000, Nature.

[37]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[38]  An eye-opening experience. , 1991, The British journal of theatre nursing : NATNews : the official journal of the National Association of Theatre Nurses.

[39]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[40]  Si Wu,et al.  Binocular Input Coincidence Mediates Critical Period Plasticity in the Mouse Primary Visual Cortex , 2014, The Journal of Neuroscience.

[41]  L. Maffei,et al.  Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex , 2002, Science.

[42]  Michael P Stryker,et al.  An eye-opening experience , 2005, Nature Neuroscience.

[43]  W. Singer,et al.  Modulation of visual cortical plasticity by acetylcholine and noradrenaline , 1986, Nature.

[44]  Sandra J. Kuhlman,et al.  A disinhibitory microcircuit initiates critical period plasticity in visual cortex , 2013, Nature.

[45]  N. Daw,et al.  Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor , 2005, Science.

[46]  L. Maffei,et al.  BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex , 1999, Cell.

[47]  Susumu Tonegawa,et al.  t Brain-Derived Neurotrophic Factor Overexpression Induces Precocious Critical Period in Mouse Visual Cortex , 1999, The Journal of Neuroscience.

[48]  K. Miller,et al.  A Theory of the Transition to Critical Period Plasticity: Inhibition Selectively Suppresses Spontaneous Activity , 2013, Neuron.

[49]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[50]  T. Hensch Critical period mechanisms in developing visual cortex. , 2005, Current topics in developmental biology.

[51]  Sandra J. Kuhlman,et al.  Fast-spiking interneurons have an initial orientation bias that is lost with vision , 2011, Nature Neuroscience.

[52]  Stephen D. Van Hooser,et al.  Title : Emerging feed-forward inhibition allows the robust formation of direction 1 selectivity in the developing ferret visual cortex 2 3 Abbreviated title : Feed-forward methods for learning direction selectivity , 2014 .

[53]  A. Maffei,et al.  Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of Mouse Primary Visual Cortex , 2014, The Journal of Neuroscience.

[54]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[55]  G. Turrigiano Homeostatic signaling: the positive side of negative feedback , 2007, Current Opinion in Neurobiology.

[56]  W Singer,et al.  Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties. , 1989, Journal of neurophysiology.

[57]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[58]  Michael P Stryker,et al.  Cortical Plasticity Induced by Inhibitory Neuron Transplantation , 2010, Science.

[59]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[60]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[61]  L. C. Katz,et al.  Early development of ocular dominance columns. , 2000, Science.

[62]  Michael C. Crair,et al.  Visual Map Development Depends On The Temporal Pattern of Binocular Activity in Mice , 2011, Nature Neuroscience.

[63]  Keith B. Hengen,et al.  Firing Rate Homeostasis in Visual Cortex of Freely Behaving Rodents , 2013, Neuron.

[64]  M. Stryker,et al.  Development and Plasticity of the Primary Visual Cortex , 2012, Neuron.

[65]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.