Ambiguity without a state space

Many decisions involve both imprecise probabilities and intractable states of the world. Objective expected utility assumes unambiguous probabilities; subjective expected utility assumes a completely specified state space. This paper analyses a third domain of preference: sets of consequential lotteries. Using this domain, we develop a theory of objective ambiguity without explicit reference to any state space. We characterize a representation that integrates a non-linear transformation of first-order expected utility with respect to a second-order measure. The concavity of the transformation and the weighting of the measure capture ambiguity aversion. We propose a definition for comparative ambiguity aversion. Copyright 2008, Wiley-Blackwell.

[1]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[2]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[4]  C. Kraft,et al.  Intuitive Probability on Finite Sets , 1959 .

[5]  Redaktionen THE REVIEW OF ECONOMIC STUDIES , 1960 .

[6]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[7]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[8]  Roy C. McCullough Fables of Reinsurance , 1964 .

[9]  Patrick Suppes,et al.  The Probabilistic Argument for a Non-Classical Logic of Quantum Mechanics , 1966, Philosophy of Science.

[10]  Ethan D. Bolker,et al.  Functions resembling quotients of measures , 1966 .

[11]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[12]  Ethan D. Bolker,et al.  A Simultaneous Axiomatization of Utility and Subjective Probability , 1967, Philosophy of Science.

[13]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[14]  Kenneth J. Arrow,et al.  Studies in Resource Allocation Processes: Appendix: An optimality criterion for decision-making under ignorance , 1977 .

[15]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[16]  David M. Kreps A REPRESENTATION THEOREM FOR "PREFERENCE FOR FLEXIBILITY" , 1979 .

[17]  N. Doherty,et al.  Reinsurance under Conditions of Capital Market Equilibrium: A Note , 1981 .

[18]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[19]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[20]  Eddie Dekel An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom , 1986 .

[21]  Uzi Segal,et al.  The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach , 1987 .

[22]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[23]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[24]  J. Jaffray Linear utility theory for belief functions , 1989 .

[25]  Uzi Segal,et al.  Two Stage Lotteries Without the Reduction Axiom , 1990 .

[26]  David Mayers,et al.  On the Corporate Demand for Insurance: Evidence from the Reinsurance Market , 1990 .

[27]  John Broome Bolker-Jeffrey Expected Utility Theory and Axiomatic Utilitarianism , 1990 .

[28]  Eddie Dekel,et al.  Lexicographic Probabilities and Choice Under Uncertainty , 1991 .

[29]  D. Schmeidler,et al.  A More Robust Definition of Subjective Probability , 1992 .

[30]  P. Malliavin Infinite dimensional analysis , 1993 .

[31]  I. Gilboa,et al.  Case-Based Decision Theory , 1995 .

[32]  Kin Chung Lo,et al.  Equilibrium in Beliefs under Uncertainty , 1996 .

[33]  Peter Klibanofi,et al.  Uncertainty, Decision, and Normal Form Games , 1996 .

[34]  Sujoy Mukerji,et al.  Understanding the nonadditive probability decision model , 1997 .

[35]  Larry G. Epstein,et al.  Subjective Probabilities on Subjectively Unambiguous Events , 2001 .

[36]  Klaus Nehring,et al.  Preference for Flexibility in a Savage Framework , 1999 .

[37]  Jiankang Zhang,et al.  Qualitative probabilities on λ-systems , 1999 .

[38]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[39]  Faruk Gul,et al.  Temptation and Self‐Control , 1999 .

[40]  V. Feltkamp,et al.  A Bayesian Approach to Uncertainty Aversion , 1999 .

[41]  Ramon Casadesus-Masanell,et al.  Maxmin Expected Utility over Savage Acts with a Set of Priors , 2000, J. Econ. Theory.

[42]  Jonathan Barzilai,et al.  On the foundations of measurement , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[43]  Klaus Nehring Ambiguity in the Context of Probabilistic Beliefs , 2001 .

[44]  Paolo Ghirardato,et al.  Coping with ignorance: unforeseen contingencies and non-additive uncertainty , 2001 .

[45]  Barton L. Lipman,et al.  REPRESENTING PREFERENCES WITH A UNIQUE SUBJECTIVE STATE SPACE , 2001 .

[46]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[47]  Massimo Marinacci,et al.  Ambiguity from the Differential Viewpoint , 2002 .

[48]  Jean-Yves Jaffray,et al.  How to Deal with Partially Analyzed Acts? A Proposal , 2004, ISIPTA.

[49]  Tan Wang A Class of Multi-Prior Preferences , 2003 .

[50]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[51]  Haluk Ergin,et al.  A subjective theory of compound lotteries , 2003 .

[52]  J. Tallon,et al.  Coping with Imprecise Information : A Decision Theoretic Approach , 2004 .

[53]  Thibault Gajdos,et al.  Decision making with imprecise probabilistic information , 2004 .

[54]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[55]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[56]  Massimo Marinacci,et al.  COARSE CONTINGENCIES , 2005 .

[57]  Raphaël Giraud,et al.  Objective Imprecise Probabilistic Information, Second Order Beliefs and Ambiguity Aversion: an Axiomatization , 2005, ISIPTA.

[58]  Yoram Halevy Ellsberg Revisited: An Experimental Study , 2005 .

[59]  Marciano M. Siniscalchi A Behavioral Characterization of Plausible Priors , 2006, J. Econ. Theory.

[60]  Wojciech Olszewski,et al.  Preferences over Sets of Lotteries , 2006 .

[61]  Robert F. Nau,et al.  Uncertainty Aversion with Second-Order Utilities and Probabilities , 2006, Manag. Sci..