SIMULATION OF SELF-SIMILAR TRAFFIC AND A TCP TRAFFIC SIMULATOR

This paper presents a simulation method of self-similar traffic and a type of TCP traffic simulators based on autocorrelation sequences. The impulse function of a simulator is carried out. The parameter estimations for modeling the impulse function of the simulator are determined by multidimensio nal nonlinear least squares fitting. The existence and the uniqueness of solutions for the multidimensional nonlinear least squares are proved based on convex analysis.

[1]  Robert O. Harger An Introduction to Digital Signal Processing with MathCad , 1998 .

[2]  S. McLaughlin,et al.  Testing the Gaussian assumption for self-similar teletraffic models , 1997, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics.

[3]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[4]  A. P. Jeary,et al.  Random damping in buildings and its AR model , 1999 .

[5]  H. Michiel,et al.  Teletraffic engineering in a broad-band era , 1997, Proc. IEEE.

[6]  Weijia Jia,et al.  A whole correlation structure of asymptotically self-similar traffic in communication networks , 2000, Proceedings of the First International Conference on Web Information Systems Engineering.

[7]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[8]  Qiusheng Li A New Exact Approach for Analyzing Free Vibration of SDOF Systems with Nonperiodically Time Varying Parameters , 2000 .

[9]  Joab R Winkler,et al.  Numerical recipes in C: The art of scientific computing, second edition , 1993 .

[10]  V. Paxson,et al.  Wide-area traffic: the failure of Poisson modeling , 1994, SIGCOMM.

[11]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.

[12]  Armand M. Makowski,et al.  Modeling video traffic using M/G/∞ input processes: a compromise between Markovian and LRD models , 1998, IEEE J. Sel. Areas Commun..

[13]  Weijia Jia,et al.  An on-line correction technique of random loading with a real-time signal processor for a laboratory fatigue test , 2000 .

[14]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[15]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  N.D. Georganas,et al.  Self-Similar Processes in Communications Networks , 1998, IEEE Trans. Inf. Theory.

[18]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[19]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[20]  Vern Paxson,et al.  Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.

[21]  Petersen,et al.  An H2-Optimal control of random loading for a laboratory fatigue test , 1998 .

[22]  J.-N. Yang,et al.  Simulation of random envelope processes. , 1972 .

[23]  Q.S. Li,et al.  Exact Solutions for Free Vibration of Single-Degree-of-Freedom Systems with Nonperiodically Varying Parameters , 2000 .

[24]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.

[25]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis, Volume 9: Gabor and Wavelet Transforms, with an Implementation in S , 1998 .

[26]  Oliver W. W. Yang,et al.  Estimation of Hurst parameter by variance-time plots , 1997, 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997.

[27]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .

[28]  P. Dirac Principles of Quantum Mechanics , 1982 .

[29]  Michael Devetsikiotis,et al.  Modeling and simulation of self-similar variable bit rate compressed video: a unified approach , 1995, SIGCOMM '95.

[30]  Maliha S. Nash,et al.  Practical Time-Frequency Analysis, Gabor and Wavelet Transforms With an Implementation in S , 2002, Technometrics.