Microbiological evidence for Fe(III) reduction on early Earth

[1]  S. Barns,et al.  Microbial diversity in ocean, surface and subsurface environments , 1997 .

[2]  Jizhong Zhou,et al.  Thermophilic Fe(III)-Reducing Bacteria from the Deep Subsurface: The Evolutionary Implications , 1997 .

[3]  B. Patel,et al.  Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. , 1997, International journal of systematic bacteriology.

[4]  M. Dreier,et al.  Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. , 1997, International journal of systematic bacteriology.

[5]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[6]  T. Schmidt,et al.  Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria , 1996, Journal of bacteriology.

[7]  H. Aldrich,et al.  Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. , 1995, International journal of systematic bacteriology.

[8]  J. Crolet,et al.  Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales , 1995, Applied and environmental microbiology.

[9]  M. D. Wit,et al.  Early Archean (>3.2 Ga) Fe-oxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, South Africa , 1994 .

[10]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[11]  M. Adams Enzymes and proteins from organisms that grow near and above 100 degrees C. , 1993, Annual review of microbiology.

[12]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Noll,et al.  Improved Methods for Cultivation of the Extremely Thermophilic Bacterium Thermotoga neapolitana , 1992, Applied and environmental microbiology.

[14]  N. Holm Why are Hydrothermal Systems Proposed as Plausible Environments for the Origin of Life , 1992 .

[15]  Michael J. Russell,et al.  Mineral Theories of the Origin of Life and an Iron Sulfide Example , 1992 .

[16]  Norman R. Pace,et al.  Origin of life-facing up to the physical setting , 1991, Cell.

[17]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[18]  JAMES C. G. Walker,et al.  Was the Archaean biosphere upside down? , 1987, Nature.

[19]  D. Lovley,et al.  Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments , 1986, Applied and environmental microbiology.

[20]  P. Brimblecombe,et al.  Iron and sulfur in the pre-biologic ocean. , 1985, Precambrian research.

[21]  J. Hobbie,et al.  Use of nuclepore filters for counting bacteria by fluorescence microscopy , 1977, Applied and environmental microbiology.

[22]  Thomas D. Brock,et al.  Biology of microorganisms , 1970 .