SIFT flow for abrupt motion tracking via adaptive samples selection with sparse representation

Abrupt motions commonly cause conventional tracking methods to fail because they violate the motion smoothness constraint. To overcome this problem, we propose a novel SIFT flow tracker (SFT) and integrate it into a sparse representation-based tracking framework. In this method, we first introduce the SIFT flow method to address the tracking problem. The method can avoid the local-trap modes and cope with abrupt motion without any prior knowledge. Then, for obtaining the effective samples, we design a new hybrid sampling mechanism, which can sample the local and global predicted location according to confidence map. Finally, to adapt the target appearance variations, especially to partial occlusion, we embed SFT to L1 tracker and construct a unified framework to track both smooth and abrupt motion in time. Compared with several state-of-art tracking algorithms, experimental results demonstrate that our method achieves favorable performance in handling abrupt motion, even under target appearance variations including illumination changes, partial occlusion and pose changes.

[1]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Baochang Zhang,et al.  Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR) , 2011, Pattern Recognit..

[3]  N. Ahuja,et al.  Robust Visual Tracking via MultiTask Sparse Learning , 2012 .

[4]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jiwen Lu,et al.  Abrupt Motion Tracking Via Intensively Adaptive Markov-Chain Monte Carlo Sampling , 2012, IEEE Transactions on Image Processing.

[6]  Fatih Murat Porikli,et al.  Object tracking in low-frame-rate video , 2005, IS&T/SPIE Electronic Imaging.

[7]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[9]  Václav Hlavác,et al.  Efficient MRF Deformation Model for Non-Rigid Image Matching , 2007, CVPR.

[10]  Jean Meunier,et al.  Sift-flow registration for facial expression analysis using Gabor wavelets , 2012, 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA).

[11]  Ales Leonardis,et al.  A Two-Stage Dynamic Model for Visual Tracking , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Zhongliang Jing,et al.  Robust visual tracking using discriminative stable regions and K-means clustering , 2013, Neurocomputing.

[14]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[15]  Wei Xiong,et al.  Scale Selection in SIFT Flow for Robust Dense Image Matching , 2013, PCM.

[16]  Junseok Kwon,et al.  Wang-Landau Monte Carlo-Based Tracking Methods for Abrupt Motions , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Shiqiang Hu,et al.  SIFT flow for large-displacement object tracking. , 2014, Applied optics.

[19]  Zhidong Li,et al.  An improved mean-shift tracker with kernel prediction and scale optimisation targeting for low-frame-rate video tracking , 2008, 2008 19th International Conference on Pattern Recognition.

[20]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Xiaoyu Zhang,et al.  Visual Tracking via Constrained Incremental Non-negative Matrix Factorization , 2015, IEEE Signal Processing Letters.

[22]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Shengping Zhang,et al.  Robust visual tracking based on online learning sparse representation , 2013, Neurocomputing.

[24]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[25]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  G. Hua,et al.  Multi-scale visual tracking by sequential belief propagation , 2004, CVPR 2004.

[27]  Yuan Li,et al.  Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Lifespans , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[29]  Bohan Zhuang,et al.  Visual tracking via discriminative sparse similarity map. , 2014, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[30]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[31]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Ying Wu,et al.  Discriminative Spatial Attention for Robust Tracking , 2010, ECCV.

[35]  Tao Zhou,et al.  Online learning and joint optimization of combined spatial-temporal models for robust visual tracking , 2017, Neurocomputing.

[36]  Shiqiang Hu,et al.  Visual tracking via robust multitask sparse prototypes , 2015, J. Electronic Imaging.