Density-based IFCM along with its interval valued and probabilistic extensions, and a review of intuitionistic fuzzy clustering methods

[1]  Pranab K. Muhuri,et al.  PIFHC: The Probabilistic Intuitionistic Fuzzy Hierarchical Clustering Algorithm , 2022, Appl. Soft Comput..

[2]  Xiaojun Zhou,et al.  Kernel intuitionistic fuzzy c-means and state transition algorithm for clustering problem , 2020, Soft Computing.

[3]  R. K. Agrawal,et al.  Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation , 2020, Soft Comput..

[4]  Meena Tushir,et al.  An Enhanced Spatial Intuitionistic Fuzzy C-means Clustering for Image Segmentation , 2020 .

[5]  Paolo Giordani,et al.  A review and proposal of (fuzzy) clustering for nonlinearly separable data , 2019, Int. J. Approx. Reason..

[6]  Mamta Juneja,et al.  Optic disc and optic cup segmentation from retinal images using hybrid approach , 2019, Expert Syst. Appl..

[7]  Dhirendra Kumar,et al.  A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree , 2019, Pattern Recognit. Lett..

[8]  Hongmei Li,et al.  Rough intuitionistic type-2 fuzzy c-means clustering algorithm for MR image segmentation , 2019, IET Image Process..

[9]  Ling Chen,et al.  A study on multi-kernel intuitionistic fuzzy C-means clustering with multiple attributes , 2019, Neurocomputing.

[10]  Pranab K. Muhuri,et al.  A convergence theorem and an experimental study of intuitionistic fuzzy c-mean algorithm over machine learning dataset , 2018, Appl. Soft Comput..

[11]  Na Li,et al.  Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation , 2018, Neurocomputing.

[12]  Sidong Xian,et al.  Intuitionistic fuzzy linguistic clustering algorithm based on a new correlation coefficient for intuitionistic fuzzy linguistic information , 2018, Pattern Analysis and Applications.

[13]  R. J. Kuo,et al.  A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis , 2018, Appl. Soft Comput..

[14]  Dhirendra Kumar,et al.  A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image , 2018, Multimedia Tools and Applications.

[15]  Wenke Zang,et al.  A Kernel-Based Intuitionistic Fuzzy C-Means Clustering Using a DNA Genetic Algorithm for Magnetic Resonance Image Segmentation , 2017, Entropy.

[16]  Anupama Namburu,et al.  Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation , 2017, IET Image Process..

[17]  Li Jun,et al.  Online Visual Multiple Target Tracking by Intuitionistic Fuzzy Data Association , 2017, Int. J. Fuzzy Syst..

[18]  C. Li,et al.  D-FCM: Density based fuzzy c-means clustering algorithm with application in medical image segmentation , 2017, ITQM.

[19]  Pagavathigounder Balasubramaniam,et al.  A new fuzzy clustering algorithm for the segmentation of brain tumor , 2016, Soft Comput..

[20]  Aditi Sharan,et al.  An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation , 2016, Appl. Soft Comput..

[21]  Yogita K. Dubey,et al.  Segmentation of brain MR images using rough set based intuitionistic fuzzy clustering , 2016 .

[22]  Qingmao Hu,et al.  Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering , 2015, Comput. Math. Methods Medicine.

[23]  A Konar,et al.  A novel segmentation approach for noisy medical images using Intuitionistic fuzzy divergence with neighbourhood‐based membership function , 2015, Journal of microscopy.

[24]  Xiujuan Lei,et al.  ABC and IFC: Modules Detection Method for PPI Network , 2014, BioMed research international.

[25]  Tamalika Chaira,et al.  An Atanassov's intuitionistic Fuzzy Kernel Clustering for Medical Image segmentation , 2014, Int. J. Comput. Intell. Syst..

[26]  Vassilis P. Plagianakos,et al.  Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images , 2014, Artificial Intelligence Review.

[27]  Anjana Gosain,et al.  RETRACTED: A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images , 2013 .

[28]  Pier Luca Lanzi,et al.  A novel intuitionistic fuzzy clustering method for geo-demographic analysis , 2012, Expert Syst. Appl..

[29]  Zeshui Xu,et al.  Intuitionistic fuzzy MST clustering algorithms , 2012, Comput. Ind. Eng..

[30]  M. A. Balafar Fuzzy C-mean based brain MRI segmentation algorithms , 2012, Artificial Intelligence Review.

[31]  Tamalika Chaira,et al.  A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images , 2011, Appl. Soft Comput..

[32]  Nikos Pelekis,et al.  Clustering uncertain trajectories , 2011, Knowledge and Information Systems.

[33]  Zeshui Xu,et al.  Intuitionistic fuzzy C-means clustering algorithms , 2010 .

[34]  Zeshui Xu,et al.  Clustering algorithm for intuitionistic fuzzy sets , 2008, Inf. Sci..

[35]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[36]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[37]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[38]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[39]  Krassimir T. Atanassov,et al.  Intuitionistic Fuzzy Sets - Theory and Applications , 1999, Studies in Fuzziness and Soft Computing.

[40]  Shyi-Ming Chen,et al.  Measures of similarity between vague sets , 1995, Fuzzy Sets Syst..

[41]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[42]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[43]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[44]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[45]  Allan D. Shocker,et al.  Market Structure Analysis: Hierarchical Clustering of Products Based on Substitution-In-Use , 1981 .

[46]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[47]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[48]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[49]  R. Prim Shortest connection networks and some generalizations , 1957 .