Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series

The first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series, i.e., Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, Sr5Ti4O13, and Sr6Ti5O16, have been grown by reactive molecular beam epitaxy. A combination of atomic absorption spectroscopy and reflection high-energy electron diffraction intensity oscillations were used for the strict composition control necessary for the synthesis of these phases. X-ray diffraction and high-resolution transmission electron microscope images confirm that these films are epitaxially oriented and nearly free of intergrowths. Dielectric measurements indicate that the dielectric constant tensor coefficient e33 increases from a minimum of 44±4 in the n=1(Sr2TiO4) film to a maximum of 263±2 in the n=∞(SrTiO3) film.

[1]  R. Tilley An electron microscope study of perovskite-related oxides in the SrTiO system , 1977 .

[2]  A. Sirenko,et al.  Oxide Thin Films for Tunable Microwave Devices , 2000 .

[3]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[4]  M. Hervieu,et al.  Study of the Layered Magnetoresistive Perovskite La1.2Sr1.8Mn2O7 by High-Resolution Electron Microscopy and Synchrotron X-ray Powder Diffraction , 1997 .

[5]  Edward Teller,et al.  X‐Ray Interference in Partially Ordered Layer Lattices , 1942 .

[6]  C. Noguera Theoretical investigation of the Ruddlesden-Popper compounds Sr n+1Ti n O3n+1 (n=1-3) , 2000 .

[7]  K. Udayakumar,et al.  Structural Aspects of Phase Equilibria in the Strontium‐Titanium‐Oxygen System , 1988 .

[8]  X. Xiang,et al.  Quantitative microwave near-field microscopy of dielectric properties , 1998 .

[9]  T. White,et al.  Defect structure and chemistry of (CaxSr1-x)n+1Tin03n+1 layer perovskites , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  Tetsuro Nakamura,et al.  On the perovskite-related materials of high dielectric permittivity with small temperature dependence and low dielectric loss , 1997 .

[11]  R. Roy,et al.  Phase Equilibria in the 1375°C Isotherm of the System Sr‐Ti‐O , 1969 .

[12]  William E Lee,et al.  Phase stability and interfacial structures in the SrO-SrTiO3system , 1997 .

[13]  E. M. Levin,et al.  Phase diagrams for ceramists 1975 Supplement , 1969 .

[14]  H. Kohler,et al.  Mixed-perovskite substrates for high-Tc superconductors , 1991 .

[15]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[16]  G. Virshup,et al.  Engineering of ultrathin barriers in high TC, trilayer Josephson junctions , 1992 .

[17]  C. Mueller,et al.  (YBa2Cu3O7−δ,Au)/SrTiO3/LaAlO3 thin film conductor/ferroelectric coupled microstripline phase shifters for phased array applications , 1997 .

[18]  D. Schlom,et al.  RHEED Intensity Oscillations for the Stoichiometric Growth of SrTiO3 Thin Films by Reactive Molecular Beam Epitaxy , 2000 .

[19]  P. Marsh,et al.  Superconductor defect structure , 1990, Nature.

[20]  R. Lareau,et al.  New substrates for HTSC microwave devices , 1997, IEEE Transactions on Applied Superconductivity.

[21]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[22]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[23]  T. Williams,et al.  New layered perovskites in the SrRuO system: A transmission electron microscope study , 1991 .

[24]  W. Kwestroo,et al.  The Systems BaO‐SrO‐TiO2, BaO‐CaO‐TiO2, and SrO‐CaO‐TiO2 , 1959 .

[25]  D. Riley,et al.  An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals , 1945 .

[26]  P. Battle,et al.  A HRTEM Study of the Ruddlesden-Popper Compositions Sr2LnMn2O7(Ln=Y, La, Nd, Eu, Ho) , 1998 .

[27]  I. Takeuchi,et al.  A low-loss composition region identified from a thin-film composition spread of (Ba1−x−ySrxCay)TiO3 , 1999 .