Chapter 5 Light-Emitting-Diode Device Design

Publisher Summary The chapter discusses the light-emitting-diode (LED) structures suitable for communications use at both 0.9- and 1.3-μm wavelengths. For LEDs to be used as light sources in optical-fiber systems, the ultimate performance requirements are (1) high output power, (2) large modulation bandwidth, and (3) efficient coupling to optical fiber requirements that are quite different from those of the more familiar indicator-lamp LEDs. The chapter also elaborates on the formulation of design principles to achieve the first two of these requirements and describes the characteristics and performance of practical devices, as well as practical coupling to fibers. The chapter discusses more recent extension of LED technologies to the production of multiple wavelengths from single devices. Both practical high-radiance surface-emitting and edge-emitting LEDs have demonstrated high-power and large-bandwidth capabilities for use as optical sources in lightwave communications systems. A variety of lensing techniques have been developed to increase coupling efficiency to fibers, especially for surface emitters.

[1]  J. Heinen,et al.  Frequency response of GaAlAs light-emitting diodes , 1976, IEEE Transactions on Electron Devices.

[2]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .

[3]  N. Dutta,et al.  Light saturation of InGaAsP-InP LED's , 1982 .

[5]  R. Goodfellow,et al.  Wide-bandwidth high-radiance gallium-arsenide light-emitting diodes for fibre-optic communication , 1976 .

[6]  R. Lang,et al.  Nonradiative recombination in InGaAsP/InP light sources causing light emitting diode output saturation and strong laser‐threshold‐current temperature sensitivity , 1981 .

[7]  R. W. Dawson,et al.  SMALL‐AREA HIGH‐CURRENT‐DENSITY GaAs ELECTROLUMINESCENT DIODES AND A METHOD OF OPERATION FOR IMPROVED DEGRADATION CHARACTERISTICS , 1970 .

[8]  M. Asada,et al.  Measurement of spontaneous emission efficiency and nonradiative recombinations in 1.58‐μm wavelength GaInAsP/InP crystals , 1982 .

[9]  I. Hino,et al.  LED Pulse response analysis considering the distributed CR constant in the peripheral junction , 1979, IEEE Transactions on Electron Devices.

[10]  J. Heinen,et al.  Light-emitting diodes with a modulation bandwidth of more than 1 GHz , 1976 .

[11]  B. I. Miller,et al.  Small-area, double-heterostructure aluminum-gallium arsenide electroluminescent diode sources for optical-fiber transmission lines , 1971 .

[12]  R. H. Saul,et al.  InGaAsP LEDs for 1.3-μm optical transmission , 1983, The Bell System Technical Journal.

[13]  K H Yang,et al.  Calculation of coupling losses between light emitting diodes and low-loss optical fibers. , 1975, Applied optics.

[14]  O. Wada,et al.  High speed response InGaAsP/InP DH LED's in the 1 µm wavelength region , 1982, IEEE Electron Device Letters.

[15]  Dietrich Marcuse LED fundamentals: Comparison of front- and edge-emitting diodes , 1977 .

[16]  J. Zucker Closed‐form calculation of the transient behavior of (Al,Ga)As double‐heterojunction LED’s , 1978 .

[17]  M. Abe,et al.  Coupling of spherical‐surfaced LED and spherical‐ended fiber , 1980 .

[18]  O. Wada,et al.  Direct observation of electron leakage in InGaAsP/InP double heterostructure , 1982 .

[19]  C. Henry,et al.  Origin of n≃2 injection current in AlxGa1−xAs heterojunctions , 1977 .

[20]  H. Temkin,et al.  Light‐current characteristics of InGaAsP light emitting diodes , 1981 .

[21]  R. Nelson,et al.  Interfacial recombination velocity in GaAlAs/GaAs heterostructures , 1978 .

[22]  L. D’asaro,et al.  BAND‐FILLING MODEL FOR GaAs INJECTION LUMINESCENCE , 1963 .

[23]  U. Koren,et al.  Direct measurement of the carrier leakage in an InGaAsP/InP laser , 1983 .

[24]  H. Namizaki,et al.  Frequency response of Ga 1-x Al x As light-emitting diodes , 1974 .

[25]  C. Zipfel,et al.  Planar, fast, reliable, single-heterojunction light-emitting diodes for optical links , 1980, The Bell System Technical Journal.

[26]  H. Temkin,et al.  Effect of p-n junction position on the performance of InGaAsP light emitting diodes , 1982 .

[27]  N. Schumaker,et al.  Temperature dependence of the lasing threshold current of double heterostructure injection lasers due to drift current loss , 1980 .

[28]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[29]  R. H. Saul Recent advances in the performance and reliability of InGaAsP LED's for lightwave communication systems , 1983 .

[30]  High-efficiency long-lived GaAlAs LED's for fiber-optical communications , 1977, IEEE Transactions on Electron Devices.

[31]  LEDs and photodetectors for wavelength-division-multiplexed light-wave systems , 1982 .

[32]  C. A. Burrus,et al.  Dual wavelength surface emitting InGaAsP l.e.d.s , 1980 .

[33]  Paul A. Kohl,et al.  Photoelectrochemical etching of integral lenses on InGaAsP/InP light‐emitting diodes , 1983 .

[34]  M. Umeno,et al.  Measurement of Diffusion Coefficient and Surface Recombination Velocity for p-InGaAsP Grown on InP , 1980 .

[35]  Henry Kressel,et al.  Very high radiance edge-emitting LED , 1976 .

[36]  C. A. Burrus,et al.  Improved Two Wavelength Demultiplexing InGaAsP Photodetector , 1980, Integrated and Guided Wave Optics.

[37]  J. Schlafer,et al.  Measurement of radiative recombination coefficient and carrier leakage in 1.3 μm INGaAsP lasers with lightly doped active layers , 1982 .

[38]  A. Carter,et al.  Radiance saturation in small-area GaInAsP/InP and GaAlAs/GaAs LED's , 1981, IEEE Transactions on Electron Devices.

[39]  O. Wada,et al.  Optimized design and fabrication of high-speed and high-radiance InGaAsP/InP DH LED in the 1-µm wavelength region , 1982, IEEE Transactions on Electron Devices.

[40]  C. L. Zipfel,et al.  New Restricted Contact LEDs Using a Schottky Barrier , 1981 .

[41]  N. Dutta,et al.  Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .

[42]  C. A. Burrus,et al.  High-speed digital lightwave communication using LEDs and PIN photodiodes at 1.3 μm , 1980, The Bell System Technical Journal.

[43]  T. Lee,et al.  AlGaAs‐GaAs double‐heterostructure small‐area light‐emitting diodes by molecular‐beam epitaxy , 1978 .

[44]  H. Imai,et al.  Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers , 1981 .

[45]  G. Acket,et al.  Electron lifetime and diffusion constant in germanium‐doped gallium arsenide , 1974 .

[46]  The integral lens coupled LED , 1975 .

[47]  J. Shah,et al.  Hot‐carrier effects in 1.3‐μ In1−xGaxAsyP1−y light emitting diodes , 1981 .

[48]  Microienses to improve LED-to-fiber optical coupling and alignment tolerance. , 1979, Applied optics.

[49]  T. Fukui,et al.  Anomalous Luminescence near the InGaAsP–InP Heterojunction Interface , 1979 .

[50]  M. Hudson Calculation of the maximum optical coupling efficiency into multimode optical waveguides. , 1974, Applied optics.

[51]  C. A. Burrus,et al.  Small-area, high-radiance c.w. InGaAsP l.e.d.s emitting at 1.2 to 1.3 μm , 1977 .

[52]  William K. Burns,et al.  High‐power low‐divergence superradiance diode , 1982 .

[53]  Osamu Wada,et al.  High radiance InGaAsP/InP lensed LED́s for optical communication systems at 1.2-1.3 µm , 1981 .

[54]  D. Marcuse,et al.  Computer model of a superluminescent LED with lateral confinement , 1981 .

[55]  J. Schlafer,et al.  Measurement of radiative and auger recombination rates in p-type InGaAsP diode lasers , 1982 .

[56]  J.A. Borsuk Light intensity profiles of surface-emitting InGaAsP LED's: Impact on coupling to optical fibers , 1983, IEEE Transactions on Electron Devices.

[57]  Ivan P. Kaminow,et al.  Lateral confinement InGaAsP superluminescent diode at 1.3 µm , 1983 .

[58]  J. Escher,et al.  Junction-current-confinement planar light-emitting diodes and optical coupling into large-core diameter fibers using lenses , 1982, IEEE Transactions on Electron Devices.

[59]  M. Takusagawa,et al.  Influences of interfacial recombination on oscillation characteristics of InGaAsP/InP DH lasers , 1980 .

[60]  Charles Howard Henry,et al.  Minority carrier lifetime and luminescence efficiency of 1.3 µm InGaAsP-InP double heterostructure layers , 1983 .

[61]  H. Temkin,et al.  Temperature dependence of photoluminescence of n‐InGaAsP , 1981 .

[62]  C. Henry,et al.  Absorption, emission, and gain spectra of 1.3 µm InGaAsP quaternary lasers , 1983, IEEE Journal of Quantum Electronics.

[63]  R. Dawson LED bandwidth improvement by bipolar pulsing , 1980 .

[64]  D.A. Smith,et al.  The frequency response of an amplitude-modulated GaAs luminescence diode , 1975, Proceedings of the IEEE.

[65]  R. H. Saul,et al.  Competing processes in long term accelerated aging of double heterostructure Ga1−xAlxAs light emitting diodes , 1982 .

[66]  O. Wada,et al.  Band-gap enhanced carrier heating in InGaAsP/InP double heterostructure light-emitting diodes , 1982 .

[67]  1.3μm InGaAsP/InP light emitting diodes with internally defined emission area prepared by single-step LPE technique , 1982 .

[68]  N. Dutta,et al.  Photoexcited carrier lifetime and Auger recombination in 1.3‐μm InGaAsP , 1983 .

[69]  T. P. Lee,et al.  Effect of junction capacitance on the rise time of led's and on the turn-on delay of injection lasers , 1975, The Bell System Technical Journal.

[70]  W. B. Joyce,et al.  Geometrical properties of random particles and the extraction of photons from electroluminescent diodes , 1974 .

[71]  W. Harth,et al.  Mg-doped InGaAsP/InP l.e.d.s for high-bit-rate optical-communication systems , 1979 .

[72]  G. Olsen,et al.  1.3 µm LPE- and VPE-grown InGaAsP edge-emitting LED́s , 1981, IEEE Journal of Quantum Electronics.

[73]  A. Y. Cho,et al.  Ga0.47In0.53As/Al0.48In0.52As multiquantum-well LEDs emitting at 1.6 μm , 1983 .

[74]  I. Griffith,et al.  GaInAsP/InP fast, high-radiance, 1.05-1.3-µm wavelength LED's with efficient lens coupling to small numerical aperture Silica optical fibers , 1979, IEEE Transactions on Electron Devices.

[75]  Henry Kressel,et al.  Laser diodes and LEDs for fiber optical communication , 1980 .

[76]  D. Rode How much Al in the AlGaAs–GaAs laser? , 1974 .

[77]  A. Springthorpe,et al.  High radiance Burrus LED's with integral 45° mirrors , 1982, IEEE Transactions on Electron Devices.

[78]  R. Goodfellow,et al.  The coupling of light‐emitting diodes to optical fibers using sphere lenses , 1975 .

[79]  W. Powazinik,et al.  Measurement of carrier and lattice heating in 1.3‐μm InGaAsP light‐emitting diodes , 1983 .