Concepts of Data-Sparse Tensor-Product Approximation in Many-Particle Modelling

AbstractWe present concepts of data-sparse tensor approximations to the functions and operatorsarising in many-particle models of quantum chemistry. Our approach is based on thesystematic use of structured tensor-product representations where the low-dimensionalcomponentsare representedin hierarchicalor waveletbased matrix formats. The modernmethods of tensor-product approximation in higher dimensions are discussed with thefocus on analytically based approaches. We give numerical illustrations which confirmthe efficiency of tensor decomposition techniques in electronic structure calculations. AMS Subject Classification: 65F30, 65F50, 65N35, 65F10Key words: Schr¨odinger equation, Hartree-Fock method, density functional theory, tensor-product approximation 1 Introduction Among the most challenging problems of scientific computing nowadays are those of high di-mensions, for instance, multi-particle interactions, integral or differential equations on [0,1] d and the related numerical operator calculus for d≥ 3. Many standard approaches have acomputational complexity that grows exponentially in the dimension dand thus fail becauseof the well known “curse of dimensionality”. To get rid of this exponential growth in thecomplexity one can use the idea of tensor-product constructions (cf. [85]) on all stages ofthe solution process. Hereby we approximate the quantity of interest in tensor-product for-mats and use other approximation methods for the remaining low-dimensional components.Depending on the specific properties of the problem, these low-dimensional components are1

[1]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[2]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[3]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[4]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[5]  Jozef Baruník Diploma thesis , 1999 .

[6]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[7]  Pál-Andrej Nitsche,et al.  Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .

[8]  J. Crank Tables of Integrals , 1962 .

[9]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[10]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[11]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[12]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[13]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[14]  Martin J. Mohlenkamp,et al.  Fast Spectral Projection Algorithms for Density-Matrix Computations , 1999 .

[15]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[16]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[18]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[19]  Boris N. Khoromskij,et al.  Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation , 2007, Math. Comput..

[20]  James S. Harris,et al.  Tables of integrals , 1998 .

[21]  Wolfgang Dahmen,et al.  Fast computation of adaptive wavelet expansions , 2007, Numerische Mathematik.

[22]  Wolfgang Hackbusch,et al.  Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.

[23]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[24]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[25]  C. Loan The ubiquitous Kronecker product , 2000 .

[26]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[27]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[28]  Boris N. Khoromskij,et al.  Approximate iterations for structured matrices , 2008, Numerische Mathematik.

[29]  T. Arias Multiresolution analysis of electronic structure: semicardinal and wavelet bases , 1998, cond-mat/9805262.

[30]  M. Griebel,et al.  On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .

[31]  Harry Yserentant,et al.  On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives , 2004, Numerische Mathematik.

[32]  E. Tyrtyshnikov Kronecker-product approximations for some function-related matrices , 2004 .

[33]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[34]  Stefan Goedecker,et al.  Efficient solution of Poisson's equation with free boundary conditions. , 2006, The Journal of chemical physics.

[35]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[36]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[37]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[38]  Gustavo E. Scuseria,et al.  Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations , 1998 .

[39]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[40]  M. Griebel,et al.  Sparse grids for the Schrödinger equation , 2007 .

[41]  Boris N. Khoromskij,et al.  Approximation of functions by exponential sums based on the Newton-type optimisation , 2005 .

[42]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[43]  W. Dahmen Multiscale and Wavelet Methods for Operator Equations , 2003 .

[44]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[45]  Reinhold Schneider,et al.  Wavelet approximation of correlated wave functions. I. Basics , 2002 .

[46]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[47]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[48]  W. Hackbusch,et al.  A sparse H -matrix arithmetic: general complexity estimates , 2000 .

[49]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[50]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[51]  Ivan P. Gavrilyuk,et al.  Operator-Valued Functions of Elliptic Operator , 2002 .

[52]  Reinhold Schneider,et al.  Wavelets for density matrix computation in electronic structure calculation , 2006 .

[53]  Ivan P. Gavrilyuk,et al.  Data-sparse approximation to a class of operator-valued functions , 2004, Math. Comput..

[54]  Wolfgang Dahmen,et al.  Multiscale Methods for Pseudo-Differential Equations on Smooth Closed Manifolds , 1994 .

[55]  S. Goedecker Wavelets and Their Application: For the Solution of Partial Differential Equations in Physics , 1998 .

[56]  Boris N. Khoromskij,et al.  Tensor decomposition in electronic structure calculations on 3D Cartesian grids , 2009, J. Comput. Phys..

[57]  Dietrich Braess,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .

[58]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[59]  M. Dolg Effective core potentials , 2000 .

[60]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[61]  Wolfgang Dahmen,et al.  Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..

[62]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[63]  E. Cancès,et al.  On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .

[64]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[65]  Károly Németh,et al.  Linear scaling density matrix search based on sign matrices , 2000 .

[66]  Reinhold Schneider,et al.  Best N-term approximation in electronic structure calculations. II. Jastrow factors , 2007 .

[67]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[68]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[69]  Frederick R. Manby,et al.  The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .

[70]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[71]  Harry Yserentant,et al.  Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.

[72]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[73]  Brett I. Dunlap,et al.  Robust and variational fitting , 2000 .

[74]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[75]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[76]  Ivan P. Gavrilyuk,et al.  $\mathcal{H}$-Matrix approximation for the operator exponential with applications , 2002, Numerische Mathematik.

[77]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[78]  D. Braess Nonlinear Approximation Theory , 1986 .

[79]  Philippe H. Tchamitchian Wavelets, functions, and operators , 1996 .

[80]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[81]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[82]  Reinhold Schneider,et al.  Asymptotic regularity of solutions to Hartree–Fock equations with Coulomb potential , 2008 .

[83]  Reinhold Schneider,et al.  Esaim: Mathematical Modelling and Numerical Analysis Best N -term Approximation in Electronic Structure Calculations I. One-electron Reduced Density Matrix , 2022 .

[84]  K. A. Semendyayev,et al.  Handbook of mathematics , 1985 .

[85]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[86]  Wolfgang Hackbusch Wavelet approximation of correlated wavefunctions � , 2003 .

[87]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[88]  Walter Kohn,et al.  Density functional theory for systems of very many atoms , 1995 .

[89]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.