Concepts of Data-Sparse Tensor-Product Approximation in Many-Particle Modelling
暂无分享,去创建一个
Reinhold Schneider | Boris N. Khoromskij | Wolfgang Hackbusch | Heinz-Jürgen Flad | W. Hackbusch | B. Khoromskij | R. Schneider | H. Flad
[1] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[2] Joos Vandewalle,et al. Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..
[3] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[4] Boris N. Khoromskij,et al. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.
[5] Jozef Baruník. Diploma thesis , 1999 .
[6] Jan Almlöf,et al. Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .
[7] Pál-Andrej Nitsche,et al. Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .
[8] J. Crank. Tables of Integrals , 1962 .
[9] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[10] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[11] B. Khoromskij,et al. Low rank Tucker-type tensor approximation to classical potentials , 2007 .
[12] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..
[13] Boris N. Khoromskij,et al. Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.
[14] Martin J. Mohlenkamp,et al. Fast Spectral Projection Algorithms for Density-Matrix Computations , 1999 .
[15] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[16] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[17] C. Loan,et al. Approximation with Kronecker Products , 1992 .
[18] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[19] Boris N. Khoromskij,et al. Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation , 2007, Math. Comput..
[20] James S. Harris,et al. Tables of integrals , 1998 .
[21] Wolfgang Dahmen,et al. Fast computation of adaptive wavelet expansions , 2007, Numerische Mathematik.
[22] Wolfgang Hackbusch,et al. Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.
[23] Jan Almlöf,et al. Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .
[24] Gregory Beylkin,et al. Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.
[25] C. Loan. The ubiquitous Kronecker product , 2000 .
[26] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[27] Boris N. Khoromskij,et al. Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.
[28] Boris N. Khoromskij,et al. Approximate iterations for structured matrices , 2008, Numerische Mathematik.
[29] T. Arias. Multiresolution analysis of electronic structure: semicardinal and wavelet bases , 1998, cond-mat/9805262.
[30] M. Griebel,et al. On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .
[31] Harry Yserentant,et al. On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives , 2004, Numerische Mathematik.
[32] E. Tyrtyshnikov. Kronecker-product approximations for some function-related matrices , 2004 .
[33] Marco Häser,et al. Auxiliary basis sets to approximate Coulomb potentials , 1995 .
[34] Stefan Goedecker,et al. Efficient solution of Poisson's equation with free boundary conditions. , 2006, The Journal of chemical physics.
[35] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[36] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[37] B. Khoromskij. Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .
[38] Gustavo E. Scuseria,et al. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations , 1998 .
[39] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[40] M. Griebel,et al. Sparse grids for the Schrödinger equation , 2007 .
[41] Boris N. Khoromskij,et al. Approximation of functions by exponential sums based on the Newton-type optimisation , 2005 .
[42] M. Griebel,et al. Optimized Tensor-Product Approximation Spaces , 2000 .
[43] W. Dahmen. Multiscale and Wavelet Methods for Operator Equations , 2003 .
[44] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions , 1993 .
[45] Reinhold Schneider,et al. Wavelet approximation of correlated wave functions. I. Basics , 2002 .
[46] E. Tyrtyshnikov. Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .
[47] W. Hackbusch,et al. A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.
[48] W. Hackbusch,et al. A sparse H -matrix arithmetic: general complexity estimates , 2000 .
[49] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[50] Ronald Kriemann,et al. Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.
[51] Ivan P. Gavrilyuk,et al. Operator-Valued Functions of Elliptic Operator , 2002 .
[52] Reinhold Schneider,et al. Wavelets for density matrix computation in electronic structure calculation , 2006 .
[53] Ivan P. Gavrilyuk,et al. Data-sparse approximation to a class of operator-valued functions , 2004, Math. Comput..
[54] Wolfgang Dahmen,et al. Multiscale Methods for Pseudo-Differential Equations on Smooth Closed Manifolds , 1994 .
[55] S. Goedecker. Wavelets and Their Application: For the Solution of Partial Differential Equations in Physics , 1998 .
[56] Boris N. Khoromskij,et al. Tensor decomposition in electronic structure calculations on 3D Cartesian grids , 2009, J. Comput. Phys..
[57] Dietrich Braess,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .
[58] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[59] M. Dolg. Effective core potentials , 2000 .
[60] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[61] Wolfgang Dahmen,et al. Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..
[62] Reinhold Schneider,et al. Multiskalen- und Wavelet-Matrixkompression , 1998 .
[63] E. Cancès,et al. On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .
[64] Wolfgang Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[65] Károly Németh,et al. Linear scaling density matrix search based on sign matrices , 2000 .
[66] Reinhold Schneider,et al. Best N-term approximation in electronic structure calculations. II. Jastrow factors , 2007 .
[67] Boris N. Khoromskij,et al. Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..
[68] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[69] Frederick R. Manby,et al. The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .
[70] J. Olsen,et al. Molecular electronic-structure theory , 2000 .
[71] Harry Yserentant,et al. Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.
[72] V. N. Temli︠a︡kov. Approximation of functions with bounded mixed derivative , 1989 .
[73] Brett I. Dunlap,et al. Robust and variational fitting , 2000 .
[74] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[75] Ivan P. Gavrilyuk,et al. Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.
[76] Ivan P. Gavrilyuk,et al. $\mathcal{H}$-Matrix approximation for the operator exponential with applications , 2002, Numerische Mathematik.
[77] Christian Ochsenfeld,et al. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .
[78] D. Braess. Nonlinear Approximation Theory , 1986 .
[79] Philippe H. Tchamitchian. Wavelets, functions, and operators , 1996 .
[80] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[81] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[82] Reinhold Schneider,et al. Asymptotic regularity of solutions to Hartree–Fock equations with Coulomb potential , 2008 .
[83] Reinhold Schneider,et al. Esaim: Mathematical Modelling and Numerical Analysis Best N -term Approximation in Electronic Structure Calculations I. One-electron Reduced Density Matrix , 2022 .
[84] K. A. Semendyayev,et al. Handbook of mathematics , 1985 .
[85] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..
[86] Wolfgang Hackbusch. Wavelet approximation of correlated wavefunctions � , 2003 .
[87] Gustavo E. Scuseria,et al. Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .
[88] Walter Kohn,et al. Density functional theory for systems of very many atoms , 1995 .
[89] Wolfgang Dahmen,et al. Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.