Combining nanooptical fields and coherent spectroscopy on systems with delocalized excitons

For nanostructures such as semiconductor quantum dot emitters or biological systems like light harvesting complexes (photosynthesis) the coupling between individual constituents leads to the formation of delocalized exciton states. Coherent two dimensional spectroscopy is a versatile tool to investigate the structure of the excitonic states, whereas nanoplasmonics allows to localize optical fields on a nanoscale: We combine these two methods in a theoretical study and propose new experiments, such as the two dimensional spectra containing spatial resolution via localized fields. Using post processing of different spectra with localized fields, we can enhance certain spectroscopic features in standard coherent spectroscopy, e.g. by suppressing unwanted resonances.

[1]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[2]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[3]  Christian Strüber,et al.  Coherent Two-Dimensional Nanoscopy , 2011, Science.

[4]  A. Knorr,et al.  Theory of excitation transfer in coupled nanostructures – from quantum dots to light harvesting complexes , 2006 .

[5]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[6]  A. Knorr,et al.  A time convolution less density matrix approach to the nonlinear optical response of a coupled system–bath complex , 2010 .

[7]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[8]  Torsten Meier,et al.  Shaping the spatiotemporal dynamics of the electron density in a hybrid metal-semiconductor nanostructure. , 2009, Optics letters.

[9]  Frank Schmidt,et al.  Adaptive finite element method for simulation of optical nano structures , 2007, 0711.2149.

[10]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[11]  S. Reich,et al.  Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches. , 2011, Physical review letters.

[12]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[13]  S. Mukamel,et al.  Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum wells. , 2007, Physical review letters.

[14]  Peifang Tian,et al.  Femtosecond Phase-Coherent Two-Dimensional Spectroscopy , 2003, Science.

[15]  Darius Abramavicius,et al.  Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. , 2009, Chemical reviews.

[16]  F. J. García de abajo,et al.  Nanoscopic ultrafast space-time-resolved spectroscopy. , 2005, Physical review letters.

[17]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[18]  A. Knorr,et al.  Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump-probe spectra , 2006 .

[19]  A. Knorr,et al.  Photon statistics as a probe for exciton correlations in coupled nanostructures , 2009 .

[20]  L. Novotný,et al.  Antennas for light , 2011 .

[21]  Shaul Mukamel,et al.  Coherent multidimensional optical spectroscopy. , 2009, Accounts of chemical research.

[22]  Christian Strüber,et al.  Spatiotemporal control of nanooptical excitations , 2010, Proceedings of the National Academy of Sciences.

[23]  B. Hecht,et al.  Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits , 2008, 0807.3676.