Interval SVM-Based Classification Algorithm Using the Uncertainty Trick

A new robust SVM-based algorithm of the binary classification is proposed. It is based on the so-called uncertainty trick when training data with the interval uncertainty are transformed to trainin...

[1]  Renata M. C. R. de Souza,et al.  Interval kernel regression , 2014, Neurocomputing.

[2]  Francisco de A. T. de Carvalho,et al.  Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..

[3]  Pei-Yi Hao,et al.  Interval regression analysis using support vector networks , 2009, Fuzzy Sets Syst..

[4]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[5]  Chiranjib Bhattacharyya,et al.  Chance constrained uncertain classification via robust optimization , 2011, Math. Program..

[6]  Wenjian Wang,et al.  Determination of the spread parameter in the Gaussian kernel for classification and regression , 2003, Neurocomputing.

[7]  Olivier Chapelle,et al.  Training a Support Vector Machine in the Primal , 2007, Neural Computation.

[8]  Lev V. Utkin,et al.  A Robust One-Class Classification Model with Interval-Valued Data Based on Belief Functions and Minimax Strategy , 2014, MLDM.

[9]  Francisco de A. T. de Carvalho,et al.  Batch SOM algorithms for interval-valued data with automatic weighting of the variables , 2016, Neurocomputing.

[10]  Lev V. Utkin,et al.  A framework for imprecise robust one-class classification models , 2014, Int. J. Mach. Learn. Cybern..

[11]  Shie Mannor,et al.  Robustness and Regularization of Support Vector Machines , 2008, J. Mach. Learn. Res..

[12]  Paula Brito,et al.  Linear discriminant analysis for interval data , 2006, Comput. Stat..

[13]  Aníbal R. Figueiras-Vidal,et al.  Pattern classification with missing data: a review , 2010, Neural Computing and Applications.

[14]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[15]  Hisao Ishibuchi,et al.  DISCRIMINANT ANALYSIS OF MULTI-DIMENSIONAL INTERVAL DATA AND ITS APPLICATION TO CHEMICAL SENSING , 1990 .

[16]  Lev V. Utkin Extensions of belief functions and possibility distributions by using the imprecise Dirichlet model , 2005, Fuzzy Sets Syst..

[17]  Lynne Billard Some Analyses of Interval Data , 2008, CIT 2008.

[18]  P. Pardalos,et al.  A Survey of Support Vector Machines with Uncertainties , 2014, Annals of Data Science.

[19]  Thomas M. Strat,et al.  Decision analysis using belief functions , 1990, Int. J. Approx. Reason..

[20]  Hadi Sadoghi Yazdi,et al.  Robust support vector machine-trained fuzzy system , 2014, Neural Networks.

[21]  Witold Pedrycz,et al.  The design of granular classifiers: A study in the synergy of interval calculus and fuzzy sets in pattern recognition , 2008, Pattern Recognit..

[22]  Eyke Hüllermeier,et al.  Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization , 2013, Int. J. Approx. Reason..

[23]  Lev V. Utkin,et al.  A new robust model of one-class classification by interval-valued training data using the triangular kernel , 2015, Neural Networks.

[24]  Davide Anguita,et al.  Support vector machines for interval discriminant analysis , 2008, Neurocomputing.