A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes.

Amphiphilic block copolymers are able to form a range of different nanoparticulate structures. These include micelles, nanospheres, nanocapsules, and polymersomes. This review attempts to clarify some of the terminology used in the literature by providing an overview of the major features of each type of nanoparticle and the factors that influence the formation of particular nanoparticulate formulations.

[1]  Stanislaus S. Wong,et al.  Block Copolymer "Crew-Cut" Micelles in Water , 1994 .

[2]  I. Kwon,et al.  Amphiphilic Diblock Copolymers Based on Poly(2-ethyl-2-oxazoline) and Poly(1,3-trimethylene carbonate): Synthesis and Micellar Characteristics , 2000 .

[3]  A. Lavasanifar,et al.  Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[4]  J. Kreuter,et al.  Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. , 1992, Journal of microencapsulation.

[5]  Alexander V. Kabanov,et al.  Effects of Pluronic Block Copolymers on Drug Absorption in Caco-2 Cell Monolayers , 1998, Pharmaceutical Research.

[6]  Chi-Hwa Wang,et al.  Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel , 2005, Pharmaceutical Research.

[7]  J. Leroux,et al.  Synthesis and Micellar Characterization of Novel Amphiphilic A−B−A Triblock Copolymers of N-(2-Hydroxypropyl)methacrylamide or N-Vinyl-2-pyrrolidone with Poly(ε-caprolactone) , 2002 .

[8]  Lifeng Zhang,et al.  Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution , 1999 .

[9]  R. Jerome,et al.  About the methods of preparation of poly(ethylene oxide)-b-poly(ε-caprolactone) nanoparticles in water Analysis by dynamic light scattering , 2004 .

[10]  A. Kabanov,et al.  Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. , 1996, Bioconjugate chemistry.

[11]  Chong-Su Cho,et al.  METHOXY POLY(ETHYLENE GLYCOL) AND CAPROLACTONE AMPHIPHILIC BLOCK CO POLYMERIC MICELLE CONTAINING INDOMETHACIN. II: MICELLE FORMATION AND DRUG RELEASE BEHAVIORS , 1998 .

[12]  Y. M. Lee,et al.  Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. , 2001, Biomaterials.

[13]  G. Kwon,et al.  Diblock copolymer nanoparticles for drug delivery. , 1998, Critical reviews in therapeutic drug carrier systems.

[14]  D. Maysinger,et al.  Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[15]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[16]  Liandong Deng,et al.  Methoxy Poly(ethylene glycol)-b-Poly(L-lactic acid) Copolymer Nanoparticles as Delivery Vehicles for Paclitaxel , 2005 .

[17]  T. A. Hatton,et al.  Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association , 1994 .

[18]  Dennis E Discher,et al.  Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[19]  S. Davis,et al.  An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. , 1993, Biochimica et biophysica acta.

[20]  P. Gellert,et al.  Poly(lactic acid)−Poly(ethylene oxide) (PLA−PEG) Nanoparticles: NMR Studies of the Central Solidlike PLA Core and the Liquid PEG Corona , 2002 .

[21]  Daniel A. Hammer,et al.  Molecular Weight Dependence of Polymersome Membrane Structure, Elasticity, and Stability , 2002 .

[22]  P. Legrand,et al.  Polyester-Poly(Ethylene Glycol) Nanoparticles Loaded with the Pure Antiestrogen RU 58668: Physicochemical and Opsonization Properties , 2003, Pharmaceutical Research.

[23]  T. Okano,et al.  Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[24]  T. A. Hatton,et al.  Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling , 1995 .

[25]  R. Liggins,et al.  Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers. , 2004, Colloids and surfaces. B, Biointerfaces.

[26]  Pavel Kratochvíl,et al.  Micelles of Block and Graft Copolymers in Solutions , 1993 .

[27]  Yong Zhang,et al.  In‐vitro cytotoxicity, in‐vivo biodistribution and anti‐tumour effect of PEGylated liposomal topotecan , 2005, The Journal of pharmacy and pharmacology.

[28]  A. Schaper,et al.  Core-cross-linked polymeric micelles as paclitaxel carriers. , 2004, Bioconjugate chemistry.

[29]  S. W. Kim,et al.  Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/glycolide) nanospheres. , 1998, Journal of biomedical materials research.

[30]  E. K. Park,et al.  Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[31]  Alexander V Kabanov,et al.  Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. , 2002, Critical reviews in therapeutic drug carrier systems.

[32]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[33]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Martin C. Garnett,et al.  Physicochemical Evaluation of Nanoparticles Assembled from Poly(lactic acid)−Poly(ethylene glycol) (PLA−PEG) Block Copolymers as Drug Delivery Vehicles , 2001 .

[35]  Robert Langer,et al.  PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics1 , 1997 .

[36]  Hatem Fessi,et al.  Nanocapsule formation by interfacial polymer deposition following solvent displacement , 1989 .

[37]  A. Eisenberg,et al.  1998 E.W.R. Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland , 1999 .

[38]  John Samuel,et al.  Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. , 2002, Advanced drug delivery reviews.

[39]  Teruo Okano,et al.  Preparation and Characterization of the Micelle-Forming Polymeric Drug Indomethacin-lncorporated Polyfethylene oxide)-Poly(β-benzyl L-aspartate) Block Copolymer Micelles , 1996 .

[40]  T. Allen The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system , 1994 .

[41]  Y. M. Lee,et al.  Preparation and characterization of biodegradable nanospheres composed of methoxy poly(ethylene glycol) and DL-lactide block copolymer as novel drug carriers. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[42]  R. Dorr Pharmacology and Toxicology of Cremophor EL Diluent , 1994, The Annals of pharmacotherapy.

[43]  Marie-Hélène Dufresne,et al.  Block copolymer micelles: preparation, characterization and application in drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[44]  Kazuo Maruyama,et al.  Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes , 1990, FEBS letters.

[45]  S. Davis,et al.  The organ uptake of intravenously administered colloidal particles can be altered using a non‐ionic surfactant (Poloxamer 338) , 1984, FEBS letters.

[46]  H. Fessi,et al.  Physicochemical Parameters Associated with Nanoparticle Formation in the Salting-Out, Emulsification-Diffusion, and Nanoprecipitation Methods , 2004, Pharmaceutical Research.

[47]  Y. M. Lee,et al.  Amphiphilic diblock copolymeric nanospheres composed of methoxy poly(ethylene glycol) and glycolide: properties, cytotoxicity and drug release behaviour. , 1999, Biomaterials.

[48]  T. Okano,et al.  Biodistribution of Micelle-Forming Polymer–Drug Conjugates , 1993, Pharmaceutical Research.

[49]  J. Leroux,et al.  Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[50]  H. Burt,et al.  Evidence for Modulation of P-glycoprotein-Mediated Efflux by Methoxypolyethylene Glycol-block-Polycaprolactone Amphiphilic Diblock Copolymers , 2004, Pharmaceutical Research.

[51]  A. Halperin Polymeric micelles: a star model , 1987 .

[52]  Hua Ai,et al.  Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery , 2004 .

[53]  Lifeng Zhang,et al.  Phase Separation Behavior and Crew-Cut Micelle Formation of Polystyrene-b-poly(acrylic acid) Copolymers in Solutions , 1997 .

[54]  S. Davis,et al.  The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages , 1986 .

[55]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[56]  R. Liggins,et al.  Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. , 2002, Advanced drug delivery reviews.

[57]  Hideyoshi Harashima,et al.  Enhanced Hepatic Uptake of Liposomes Through Complement Activation Depending on the Size of Liposomes , 1994, Pharmaceutical Research.

[58]  F. Bates,et al.  Polymer vesicles in vivo: correlations with PEG molecular weight. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[59]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[60]  Christine Allen,et al.  Nano-engineering block copolymer aggregates for drug delivery , 1999 .

[61]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[62]  S. Davis,et al.  Nanoparticles in drug delivery. , 1987, Critical reviews in therapeutic drug carrier systems.

[63]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[64]  Y. M. Lee,et al.  Indomethacin-loaded methoxy poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague–Dawley rats , 2001 .

[65]  Yechezkel Barenholz,et al.  Pharmacokinetics of Pegylated Liposomal Doxorubicin , 2003, Clinical pharmacokinetics.

[66]  A. Eisenberg,et al.  Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers , 1998 .

[67]  Giulio F. Paciotti,et al.  Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor‐targeted drug delivery vectors , 2006 .

[68]  R. Liggins,et al.  Enhanced cellular accumulation of a P-glycoprotein substrate, rhodamine-123, by Caco-2 cells using low molecular weight methoxypolyethylene glycol-block-polycaprolactone diblock copolymers. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[69]  M. Jones,et al.  Polymeric micelles - a new generation of colloidal drug carriers. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[70]  Martyn C. Davies,et al.  Polystyrene-Poly (Ethylene Glycol) (PS-PEG2000) Particles as Model Systems for Site Specific Drug Delivery. 2. The Effect of PEG Surface Density on the in Vitro Cell Interaction and in VivoBiodistribution , 1994, Pharmaceutical Research.

[71]  W. Hunter,et al.  Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel , 1999 .

[72]  M. Alonso,et al.  Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[73]  R. Müller,et al.  The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. , 1995, Advanced drug delivery reviews.

[74]  Catarina Pinto Reis,et al.  Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[75]  R. Müller,et al.  Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908 , 1993 .

[76]  Y. Jeong,et al.  Preparation of core–shell type nanoparticles of diblock copolymers of poly(L-lactide)/poly(ethylene glycol) and their characterization in vitro , 2002 .

[77]  T. Okano,et al.  Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[78]  M. Prato,et al.  Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. , 2006, Biochimica et biophysica acta.

[79]  Teruo Okano,et al.  Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-Adriamycin conjugates , 1994 .

[80]  M. Alonso,et al.  Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[81]  D. Devine,et al.  Liposome-complement interactions in rat serum: implications for liposome survival studies. , 1994, Biochimica et biophysica acta.

[82]  E. L. Senna,et al.  Preparation and Characterization of Poly(D,L-Lactide) (PLA) and Poly(D,L-Lactide)-Poly(Ethylene Glycol) (PLA-PEG) Nanocapsules Containing Antitumoral Agent Methotrexate , 2005 .

[83]  Lifeng Zhang,et al.  Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers , 1995, Science.

[84]  J. Kreuter,et al.  Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces , 1988 .

[85]  T. Park,et al.  Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[86]  Alfred N. Martin Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences , 1969 .

[87]  Christine Allen,et al.  Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. , 2004, Journal of pharmaceutical sciences.

[88]  John K. Jackson,et al.  Development of amphiphilic diblock copolymers as micellar carriers of taxol , 1996 .

[89]  A. Eisenberg,et al.  Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions , 1996 .

[90]  Markus Antonietti,et al.  Micellization of strongly segregated block copolymers , 1996 .

[91]  Kui Yu,et al.  Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers , 1996, Science.

[92]  Jean-Pierre Benoit,et al.  Parameters influencing the stealthiness of colloidal drug delivery systems. , 2006, Biomaterials.

[93]  T. Okano,et al.  Micelles based on AB block copolymers of poly(ethylene oxide) and poly(.beta.-benzyl L-aspartate) , 1993 .

[94]  Alexander V Kabanov,et al.  Pluronic block copolymers for overcoming drug resistance in cancer. , 2002, Advanced drug delivery reviews.