Targeting capacity and conservation of PreP homologues localization in mitochondria of different species.

[1]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[2]  M. Ankarcrona,et al.  Mitochondria and Alzheimer’s disease: amyloid-β peptide uptake and degradation by the presequence protease, hPreP , 2009, Journal of bioenergetics and biomembranes.

[3]  R. Lill,et al.  Dual Targeting of Nfs1 and Discovery of Its Novel Processing Enzyme, Icp55 , 2009, The Journal of Biological Chemistry.

[4]  D. Leister,et al.  Deletion of an organellar peptidasome PreP affects early development in Arabidopsis thaliana , 2009, Plant Molecular Biology.

[5]  A. Millar,et al.  Refining the Definition of Plant Mitochondrial Presequences through Analysis of Sorting Signals, N-Terminal Modifications, and Cleavage Motifs1[W][OA] , 2009, Plant Physiology.

[6]  L. Hersh,et al.  Mammalian pitrilysin: substrate specificity and mitochondrial targeting. , 2009, Biochemistry.

[7]  B. Winblad,et al.  The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae , 2008, Proceedings of the National Academy of Sciences.

[8]  O. Pines,et al.  Dual Targeted Mitochondrial Proteins Are Characterized by Lower MTS Parameters and Total Net Charge , 2008, PloS one.

[9]  R. Lister,et al.  Functional Definition of Outer Membrane Proteins Involved in Preprotein Import into Mitochondria[W] , 2007, The Plant Cell Online.

[10]  Walter Neupert,et al.  Why Do We Still Have a Maternally Inherited Mitochondrial DNA ? Insights from Evolutionary Medicine , 2007 .

[11]  J. Herrmann,et al.  Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria , 2007, The Journal of cell biology.

[12]  T. Langer,et al.  Protein Degradation within Mitochondria: Versatile Activities of AAA Proteases and Other Peptidases , 2007, Critical reviews in biochemistry and molecular biology.

[13]  J. Whelan,et al.  Plant mitochondrial protein import , 2007 .

[14]  L. Tjernberg,et al.  Degradation of the Amyloid β-Protein by the Novel Mitochondrial Peptidasome, PreP*♦ , 2006, Journal of Biological Chemistry.

[15]  Kenneth A. Johnson,et al.  The closed structure of presequence protease PreP forms a unique 10 000 Å3 chamber for proteolysis , 2006 .

[16]  T. Lithgow,et al.  Convergent Evolution of Receptors for Protein Import into Mitochondria , 2006, Current Biology.

[17]  C. Kozany,et al.  A Disulfide Relay System in the Intermembrane Space of Mitochondria that Mediates Protein Import , 2005, Cell.

[18]  T. Langer,et al.  Role of the Novel Metallopeptidase MoP112 and Saccharolysin for the Complete Degradation of Proteins Residing in Different Subcompartments of Mitochondria* , 2005, Journal of Biological Chemistry.

[19]  A. Ito,et al.  Recognition and processing of a nuclear-encoded polyprotein precursor by mitochondrial processing peptidase. , 2005, The Biochemical journal.

[20]  I. Arnold,et al.  Characterization of Peptides Released from Mitochondria , 2005, Journal of Biological Chemistry.

[21]  J. Rehfeld,et al.  Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. , 2004, European journal of biochemistry.

[22]  T. Lithgow,et al.  Tom22', an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. , 2004, Molecular biology and evolution.

[23]  K. Mihara,et al.  Targeting and Assembly of Rat Mitochondrial Translocase of Outer Membrane 22 (TOM22) into the TOM Complex* , 2004, Journal of Biological Chemistry.

[24]  J. Whelan,et al.  Mitochondrial protein import in plants – Signals, Sorting, Targeting, Processing and Regulation , 1998, Plant Molecular Biology.

[25]  S. Bhushan,et al.  Characterization of a novel zinc metalloprotease involved in degrading targeting peptides in mitochondria and chloroplasts. , 2003, The Plant journal : for cell and molecular biology.

[26]  S. Bhushan,et al.  Dual targeting and function of a protease in mitochondria and chloroplasts , 2003, EMBO reports.

[27]  P. Hudson,et al.  Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. , 2003, European journal of biochemistry.

[28]  J. Whelan,et al.  Dual targeting ability of targeting signals is dependent on the nature of the mature protein. , 2003, Functional plant biology : FPB.

[29]  Bradford W. Gibson,et al.  Characterization of the human heart mitochondrial proteome , 2003, Nature Biotechnology.

[30]  H. Brockenhuus von Löwenhielm,et al.  Isolation and Identification of a Novel Mitochondrial Metalloprotease (PreP) That Degrades Targeting Presequences in Plants* , 2002, The Journal of Biological Chemistry.

[31]  A. Matouschek,et al.  Protein unfolding by the mitochondrial membrane potential , 2002, Nature Structural Biology.

[32]  E. Glaser,et al.  Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. , 2002, Trends in plant science.

[33]  W. Neupert,et al.  Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane , 2001, The EMBO journal.

[34]  J. Trowsdale,et al.  Role of the ABC Transporter Mdl1 in Peptide Export from Mitochondria , 2001, Science.

[35]  D. Kohda,et al.  Structural Basis of Presequence Recognition by the Mitochondrial Protein Import Receptor Tom20 , 2000, Cell.

[36]  T. Langer,et al.  ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae , 1999, Cellular and Molecular Life Sciences CMLS.

[37]  L. Yan,et al.  Cloning, expression, and characterization of human metalloprotease 1: a novel member of the pitrilysin family of metalloendoproteases. , 1999, DNA and cell biology.

[38]  W. Neupert,et al.  Translocation of Apocytochrome c across the Outer Membrane of Mitochondria (*) , 1995, The Journal of Biological Chemistry.

[39]  D. Andreu,et al.  Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. , 1994, European journal of biochemistry.

[40]  S. Sjöling,et al.  The ubiquinol cytochrome c oxidoreductase complex of spinach leaf mitochondria is involved in both respiration and protein processing , 1994 .

[41]  S. Sjöling,et al.  A general processing proteinase of spinach leaf mitochondria is a membrane bound enzyme , 1992 .

[42]  R. Jensen,et al.  MAS1, a gene essential for yeast mitochondrial assembly, encodes a subunit of the mitochondrial processing protease. , 1988, The EMBO journal.

[43]  J. Richards,et al.  A chemically synthesized pre‐sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. , 1986, The EMBO journal.

[44]  G. Daum,et al.  Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. , 1982, The Journal of biological chemistry.