Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop

Abstract The first example of a neutral spin‐delocalized carbon‐nanoring radical was achieved by integration of the open‐shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo‐perpendicular arrangement of the radial and the planar π‐surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π‐framework made of 158 sp2‐carbon atoms was elucidated by single‐crystal X‐ray diffraction, which revealed a three‐segment CPP‐peropyrene‐CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor–acceptor systems.

[1]  Zhen-hua Zhou,et al.  Dimeric Cycloparaphenylenes with a Rigid Aromatic Linker , 2021, Angewandte Chemie.

[2]  Zhen-hua Zhou,et al.  Dimeric Cycloparaphenylenes with Rigid Aromatic Linker. , 2021, Angewandte Chemie.

[3]  Jishan Wu,et al.  Open-Shell Graphene Fragments , 2020, Chem.

[4]  F. Tani,et al.  Helicene Radicals: Molecules Bearing a Combination of Helical Chirality and Unpaired Electron Spin. , 2020, ChemPlusChem.

[5]  Wenping Hu,et al.  Stable Olympicenyl Radicals and Their π-Dimers. , 2020, Journal of the American Chemical Society.

[6]  S. Grimme,et al.  Exploration of the Solid-State Sorption Properties of Shape-persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates. , 2020, Journal of the American Chemical Society.

[7]  K. Itami,et al.  Synthesis and Structure of [9]Cycloparaphenylene Catenane: An All-Benzene Catenane Consisting of Small Rings. , 2020, Organic letters.

[8]  M. Delius,et al.  The Supramolecular Chemistry of Strained Carbon Nanohoops. , 2020, Angewandte Chemie.

[9]  M. Delius,et al.  Supramolekulare Chemie von gespannten Kohlenstoffnanoreifen , 2020, Angewandte Chemie.

[10]  K. Müllen,et al.  Quantum units from the topological engineering of molecular graphenoids , 2019, Science.

[11]  R. Jasti,et al.  Emerging applications of carbon nanohoops , 2019, Nature Reviews Chemistry.

[12]  Jinyi Wang,et al.  The Supramolecular Chemistry of Cycloparaphenylenes and Their Analogs , 2019, Front. Chem..

[13]  Michal Juríček,et al.  Benzo[cd]triangulene: A Spin 1/2 Graphene Fragment , 2019, The Journal of organic chemistry.

[14]  Y. Hijikata,et al.  Topological molecular nanocarbons: All-benzene catenane and trefoil knot , 2019, Science.

[15]  P. Jelínek,et al.  Atomically precise bottom-up synthesis of π-extended [5]triangulene , 2019, Science Advances.

[16]  C. Pignedoli,et al.  Synthesis and Characterization of π-Extended Triangulene. , 2019, Journal of the American Chemical Society.

[17]  J. Cybińska,et al.  Lemniscular [16]Cycloparaphenylene: A Radially Conjugated Figure-Eight Aromatic Molecule. , 2019, Journal of the American Chemical Society.

[18]  C. Tung,et al.  Synthesis and Characterization of a Pentiptycene-Derived Dual Oligoparaphenylene Nanohoop. , 2019, Angewandte Chemie.

[19]  C. Tung,et al.  Synthesis and Characterization of a Pentiptycene‐Derived Dual Oligoparaphenylene Nanohoop , 2019, Angewandte Chemie.

[20]  W. Cheng,et al.  Cycloparaphenylenes (CPPs): An Overview of Synthesis, Properties, and Potential Applications , 2018, Asian Journal of Organic Chemistry.

[21]  D. Guldi,et al.  A Supramolecular [10]CPP Junction Enables Efficient Electron Transfer in Modular Porphyrin-[10]CPP⊃Fullerene Complexes. , 2018, Angewandte Chemie.

[22]  D. Guldi,et al.  A Supramolecular [10]CPP Junction Enables Efficient Electron Transfer in Modular Porphyrin-[10]CPP⊃Fullerene Complexes. , 2018, Angewandte Chemie.

[23]  C. Tung,et al.  An isolable catenane consisting of two Möbius conjugated nanohoops , 2018, Nature Communications.

[24]  Shangfeng Yang,et al.  A Three-Dimensional Capsule-like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C70. , 2018, Angewandte Chemie.

[25]  Shangfeng Yang,et al.  A Three-Dimensional Capsule-like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C70 , 2018, Angewandte Chemie.

[26]  C. Lambert,et al.  Magnetic edge states and coherent manipulation of graphene nanoribbons , 2018, Nature.

[27]  L. Zakharov,et al.  A Molecular Propeller with Three Nanohoop Blades: Synthesis, Characterization, and Solid-State Packing. , 2017, Angewandte Chemie.

[28]  N. Moll,et al.  Synthesis and characterization of triangulene. , 2017, Nature nanotechnology.

[29]  K. Müllen,et al.  Cycloparaphenylenes and Their Catenanes: Complex Macrocycles Unveiled by Ion Mobility Mass Spectrometry. , 2017, Angewandte Chemie.

[30]  D. Häussinger,et al.  Spin-Delocalization in a Helical Open-Shell Hydrocarbon. , 2016, The Journal of organic chemistry.

[31]  T. Kubo,et al.  Recent Advances in the Chemistry of Phenalenyl , 2016 .

[32]  C. Tung,et al.  Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization-Cycloreversion Strategy. , 2016, Journal of the American Chemical Society.

[33]  Kenichiro Itami,et al.  Design und Synthese von Kohlenstoffnanoröhrensegmenten , 2016 .

[34]  Kenichiro Itami,et al.  Design and Synthesis of Carbon Nanotube Segments. , 2016, Angewandte Chemie.

[35]  M. Kertész,et al.  Fluxional σ-Bonds of the 2,5,8-Trimethylphenalenyl Dimer: Direct Observation of the Sixfold σ-Bond Shift via a π-Dimer. , 2016, Journal of the American Chemical Society.

[36]  M. Nakano,et al.  Biphenalenylidene: Isolation and Characterization of the Reactive Intermediate on the Decomposition Pathway of Phenalenyl Radical. , 2016, Journal of the American Chemical Society.

[37]  S. Yamago,et al.  Synthesis and Characterization of [n]CPP (n = 5, 6, 8, 10, and 12) Radical Cation and Dications: Size-Dependent Absorption, Spin, and Charge Delocalization. , 2016, Journal of the American Chemical Society.

[38]  Kenichiro Itami,et al.  Structurally uniform and atomically precise carbon nanostructures , 2016 .

[39]  L. Zakharov,et al.  Synthesis, Properties, and Design Principles of Donor–Acceptor Nanohoops , 2015, ACS central science.

[40]  K. Itami,et al.  Curved Oligophenylenes as Donors in Shape-Persistent Donor-Acceptor Macrocycles with Solvatofluorochromic Properties. , 2015, Angewandte Chemie.

[41]  Takashi Kubo,et al.  Phenalenyl-based open-shell polycyclic aromatic hydrocarbons. , 2015, Chemical record.

[42]  Jonathan R. Owens,et al.  Improved All-Carbon Spintronic Device Design , 2015, Scientific Reports.

[43]  M. Kertész,et al.  Evidence of σ- and π-dimerization in a series of phenalenyls. , 2014, Journal of the American Chemical Society.

[44]  K. Itami,et al.  All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure. , 2014, Journal of the American Chemical Society.

[45]  T. Kubo,et al.  Dual association modes of the 2,5,8-tris(pentafluorophenyl)phenalenyl radical. , 2014, Chemistry, an Asian journal.

[46]  K. Itami,et al.  Synthesis and dimerization of chloro[10]cycloparaphenylene: a directly connected cycloparaphenylene dimer. , 2014, Organic letters.

[47]  H. Takaya,et al.  Isolation and characterization of the cycloparaphenylene radical cation and dication. , 2013, Angewandte Chemie.

[48]  T. Majima,et al.  Synthesis and physical properties of a ball-like three-dimensional π-conjugated molecule , 2013, Nature Communications.

[49]  Bryan M. Wong,et al.  Photophysical and theoretical investigations of the [8]cycloparaphenylene radical cation and its charge-resonance dimer , 2013 .

[50]  V. Nesterov,et al.  Assessing the Potential of Peropyrene as a Singlet Fission Material: Photophysical Properties in Solution and the Solid State , 2013 .

[51]  K. Itami,et al.  Initiation of carbon nanotube growth by well-defined carbon nanorings. , 2013, Nature chemistry.

[52]  R. Jasti,et al.  Tightening of the nanobelt upon multielectron reduction. , 2013, Angewandte Chemie.

[53]  Bryan M. Wong,et al.  Synthesis, characterization, and computational studies of cycloparaphenylene dimers. , 2012, Journal of the American Chemical Society.

[54]  Shuichi Suzuki,et al.  Chiral stable phenalenyl radical: synthesis, electronic-spin structure, and optical properties of [4]helicene-structured diazaphenalenyl. , 2012, Angewandte Chemie.

[55]  K. Itami,et al.  Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. , 2012, Accounts of chemical research.

[56]  D. Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[57]  Kazunori Arifuku,et al.  Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. , 2011, Nature materials.

[58]  R. Haddon,et al.  Synthesis, crystal structure, and physical properties of sterically unprotected hydrocarbon radicals. , 2011, Journal of the American Chemical Society.

[59]  Shuichi Suzuki,et al.  Synthetic Organic Spin Chemistry for Structurally Well-defined Open-shell Graphene Fragments Open-shell Graphene Fragments , 2022 .

[60]  O. Yazyev Emergence of magnetism in graphene materials and nanostructures , 2010, 1004.2034.

[61]  C. Bertozzi,et al.  Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures , 2008, Journal of the American Chemical Society.

[62]  G. Burkard,et al.  Spin qubits in graphene quantum dots , 2006, cond-mat/0611252.

[63]  Y. Tobe,et al.  Molecular loops and belts. , 2006, Chemical reviews.

[64]  M. Nakano,et al.  Synthesis, intermolecular interaction, and semiconductive behavior of a delocalized singlet biradical hydrocarbon. , 2005, Angewandte Chemie.

[65]  M. Itkis,et al.  Resonating Valence-Bond Ground State in a Phenalenyl-Based Neutral Radical Conductor , 2005, Science.

[66]  I. Agranat,et al.  Biphenalenylidene: the forgotten bistricyclic aromatic ene. A theoretical study. , 2003, Journal of the American Chemical Society.

[67]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[68]  T. Takui,et al.  4,7,11,14,18,21-Hexa-t-butyltribenzodecacyclenyl Radical: A Six-Stage Amphoteric Redox System , 2001 .

[69]  J. Ouyang,et al.  A Stable Neutral Hydrocarbon Radical: Synthesis, Crystal Structure, and Physical Properties of 2,5,8-Tri-tert-butyl-phenalenyl , 1999 .

[70]  D. R. Duling,et al.  Simulation of multiple isotropic spin-trap EPR spectra. , 1994, Journal of magnetic resonance. Series B.

[71]  R. Haddon,et al.  Design of organic metals and superconductors , 1975, Nature.

[72]  M. Calvin,et al.  The Free Radical from Perinaphthene , 1957 .

[73]  T. Kubo,et al.  Organic Chemistry of Graphene Framework , 2015 .

[74]  A. Spek PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. , 2015, Acta crystallographica. Section C, Structural chemistry.

[75]  D. Reid The chemistry of the phenalenes , 1965 .