Large scale molecular dynamics simulations of homogeneous nucleation.

We present results from large-scale molecular dynamics (MD) simulations of homogeneous vapor-to-liquid nucleation. The simulations contain between 1 × 10(9) and 8 × 10(9) Lennard-Jones (LJ) atoms, covering up to 1.2 μs (56 × 10(6) time-steps). They cover a wide range of supersaturation ratios, S ≃ 1.55-10(4), and temperatures from kT = 0.3 to 1.0ε (where ε is the depth of the LJ potential, and k is the Boltzmann constant). We have resolved nucleation rates as low as 10(17) cm(-3) s(-1) (in the argon system), and critical cluster sizes as large as 100 atoms. Recent argon nucleation experiments probe nucleation rates in an overlapping range, making the first direct comparison between laboratory experiments and molecular dynamics simulations possible: We find very good agreement within the uncertainties, which are mainly due to the extrapolations of argon and LJ saturation curves to very low temperatures. The self-consistent, modified classical nucleation model of Girshick and Chiu [J. Chem. Phys. 93, 1273 (1990)] underestimates the nucleation rates by up to 9 orders of magnitudes at low temperatures, and at kT = 1.0ε it overestimates them by up to 10(5). The predictions from a semi-phenomenological model by Laaksonen et al. [Phys. Rev. E 49, 5517 (1994)] are much closer to our MD results, but still differ by factors of up to 10(4) in some cases. At low temperatures, the classical theory predicts critical clusters sizes, which match the simulation results (using the first nucleation theorem) quite well, while the semi-phenomenological model slightly underestimates them. At kT = 1.0ε, the critical sizes from both models are clearly too small. In our simulations the growth rates per encounter, which are often taken to be unity in nucleation models, lie in a range from 0.05 to 0.24. We devise a new, empirical nucleation model based on free energy functions derived from subcritical cluster abundances, and find that it performs well in estimating nucleation rates.

[1]  Y. Viisanen,et al.  Homogeneous nucleation rates for n‐butanol , 1994 .

[2]  Kiyoshi Nakazawa,et al.  Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. , 2005, The Journal of chemical physics.

[3]  Kenji Yasuoka,et al.  Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid , 1998 .

[4]  Daan Frenkel,et al.  Numerical calculation of the rate of homogeneous gas–liquid nucleation in a Lennard-Jones system , 1999 .

[5]  A. Laaksonen,et al.  Interfacial curvature free energy, the Kelvin relation, and vapor–liquid nucleation rate , 1997 .

[6]  G. Chernykh,et al.  Metastable extension of the liquid-vapor phase equilibrium curve and surface tension. , 2007, The Journal of chemical physics.

[7]  K. A. Jackson,et al.  NUCLEATION AND GROWTH OF A STABLE PHASE IN AN ISING-TYPE SYSTEM , 1999 .

[8]  Ford,et al.  Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  S. Girshick,et al.  Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor , 1990 .

[10]  D. Reguera,et al.  Influence of thermostats and carrier gas on simulations of nucleation. , 2007, The Journal of chemical physics.

[11]  S. WEINTROUB,et al.  A Review of Scientific Instruments , 1932, Nature.

[12]  Hale,et al.  Application of a scaled homogeneous nucleation-rate formalism to experimental data at T << Tc. , 1986, Physical review. A, General physics.

[13]  Physical Review , 1965, Nature.

[14]  M. V. Dongen,et al.  SEMIPHENOMENOLOGICAL THEORY OF HOMOGENEOUS VAPOR-LIQUID NUCLEATION , 1995 .

[15]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[16]  T. Kraska,et al.  Argon nucleation: bringing together theory, simulations, and experiment. , 2008, The Journal of chemical physics.

[17]  B. N. Hale,et al.  Scaled vapor-to-liquid nucleation in a Lennard-Jones system. , 2010, Physical review letters.

[18]  S. Toxvaerd Molecular-dynamics simulation of homogeneous nucleation in the vapor phase , 2001 .

[19]  T. Kraska Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble. , 2006, The Journal of chemical physics.

[20]  J. Seinfeld,et al.  Direct evaluation of the equilibrium distribution of physical clusters by a grand canonical Monte Carlo simulation , 1998 .

[21]  M. S. El-shall,et al.  Homogeneous nucleation in supersaturated vapors of polar molecules: Acetonitrile, benzonitrile, nitromethane, and nitrobenzene , 1993 .

[22]  A. Michels,et al.  Isotherms of argon between 0°c and 150°c and pressures up to 2900 atmospheres , 1949 .

[23]  Journal of Chemical Physics , 1932, Nature.

[24]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[25]  P. Lugol Annalen der Physik , 1906 .

[26]  G. Meier,et al.  A semiphenomenological droplet model of homogeneous nucleation from the vapor phase , 1993 .

[27]  H. Vehkamäki,et al.  Performance of some nucleation theories with a nonsharp droplet-vapor interface. , 2010, The Journal of chemical physics.

[28]  Hans Hasse,et al.  Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  David Reguera,et al.  New method to analyze simulations of activated processes. , 2007, The Journal of chemical physics.

[30]  Ari Laaksonen,et al.  The effect of potential truncation on the gas-liquid surface tension of planar interfaces and droplets , 2001 .

[31]  H. Vehkamäki,et al.  Connection between the virial equation of state and physical clusters in a low density vapor. , 2007, The Journal of chemical physics.

[32]  I. Ford Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory , 1997 .

[33]  K. Laasonen,et al.  Molecular dynamics simulations of gas-liquid nucleation of Lennard-Jones fluid , 2000 .

[34]  Toshikazu Ebisuzaki,et al.  Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water. , 2007, The Journal of chemical physics.

[35]  Kenji Yasuoka,et al.  Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water , 1998 .

[36]  Frank H. Stillinger,et al.  Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .

[37]  G. W. Adams,et al.  Homogeneous nucleation of toluene , 1983 .

[38]  J. Alejandre,et al.  Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers , 1999 .

[39]  A. Dillmann,et al.  A refined droplet approach to the problem of homogeneous nucleation from the vapor phase , 1991 .

[40]  Philippe Ungerer,et al.  Critical point estimation of the Lennard-Jones pure fluid and binary mixtures. , 2006, The Journal of chemical physics.

[41]  G. W. Adams,et al.  Homogeneous nucleation of ethanol , 1982 .

[42]  M. Klein,et al.  Aggregation-volume-bias Monte Carlo simulations of vapor-liquid nucleation barriers for Lennard-Jonesium , 2001 .

[43]  P. Hopke,et al.  Binary N-octanol–sulfur hexafluoride nucleation , 2001 .

[44]  M. McGrath,et al.  Vapor-liquid nucleation of argon: exploration of various intermolecular potentials. , 2010, The Journal of chemical physics.

[45]  Wei Shi,et al.  Histogram reweighting and finite-size scaling study of the Lennard–Jones fluids , 2001 .

[46]  S. Yoo,et al.  Monte Carlo simulation of homogeneous binary vapor–liquid nucleation: Mutual enhancement of nucleation in a partially miscible system , 2001 .

[47]  P. Cummings,et al.  Fluid phase equilibria , 2005 .

[48]  K. Kawamura,et al.  Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules. , 2011, The Journal of chemical physics.

[49]  D. Oxtoby Homogeneous nucleation: theory and experiment , 1992 .

[50]  D. Reguera,et al.  What is the best definition of a liquid cluster at the molecular scale? , 2007, The Journal of chemical physics.

[51]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[52]  X. Zeng,et al.  Formation free energy of clusters in vapor-liquid nucleation: A Monte Carlo simulation study , 1999 .

[53]  A. Müller Journal of Physics Condensed Matter , 2008 .

[54]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[55]  Taylor Francis Online,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[56]  Jeffrey J. Potoff,et al.  Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture , 1998 .

[57]  David Reguera,et al.  Evaluating nucleation rates in direct simulations. , 2009, The Journal of chemical physics.

[58]  S. Toxvaerd Molecular dynamics simulation of nucleation in the presence of a carrier gas , 2003 .

[59]  X. Zeng,et al.  A small-system ensemble Monte Carlo simulation of supersaturated vapor: Evaluation of barrier to nucleation , 2000 .

[60]  D. Corti,et al.  A molecular theory of the homogeneous nucleation rate. II. Application to argon vapor , 1999 .

[61]  H. Reiss,et al.  Homogeneous nucleation rates for water , 1993 .

[62]  S. P. Malyshenko,et al.  Corresponding states law and molecular dynamics simulations of the Lennard-Jones fluid , 2001 .

[63]  D. Reguera,et al.  Nucleation rate isotherms of argon from molecular dynamics simulations. , 2007, The Journal of chemical physics.

[64]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[65]  B. Wyslouzil,et al.  A cryogenic supersonic nozzle apparatus to study homogeneous nucleation of Ar and other simple molecules. , 2008, The Review of scientific instruments.

[66]  D. Oxtoby,et al.  Nonclassical nucleation theory for the gas-liquid transition , 1988 .

[67]  D. Kashchiev,et al.  Argon nucleation in a cryogenic nucleation pulse chamber. , 2007, The Journal of chemical physics.

[68]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[69]  Johann Fischer,et al.  Molecular dynamics simulation of the liquid–vapor interface: The Lennard-Jones fluid , 1997 .

[70]  Daan Frenkel,et al.  Computer simulation study of gas–liquid nucleation in a Lennard-Jones system , 1998 .