Abrupt climate change and thermohaline circulation: mechanisms and predictability.

The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

[1]  J. Carton,et al.  Atlantic Climate Variability Experiment , 2001 .

[2]  R. Giering,et al.  Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity , 1999 .

[3]  Jeffery R. Scott,et al.  Convective Mixing and the Thermohaline Circulation , 1999 .

[4]  H. Storch,et al.  Climate Workshop urges interdisciplinary paleo simulations, analyses , 1999 .

[5]  Daniel Sarewitz,et al.  Prediction in the Earth sciences and environmental policy making , 1999 .

[6]  J. Lynch‐Stieglitz,et al.  A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera , 1999 .

[7]  R. Alley,et al.  THE DEGLACIATION OF THE NORTHERN HEMISPHERE: A Global Perspective , 1999 .

[8]  Peter H. Stone,et al.  Interhemispheric Thermohaline Circulation in a Coupled Box Model , 1999 .

[9]  J. Marotzke,et al.  Behavior of Double-Hemisphere Thermohaline Flows in a Single Basin , 1999 .

[10]  M. I. Moore,et al.  On the deep western-boundary current in the Southwest Pacific Basin , 1999 .

[11]  J. Marotzke,et al.  Global Thermohaline Circulation. Part I: Sensitivity to Atmospheric Moisture Transport , 1999 .

[12]  A. Weaver,et al.  Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum , 1998, Nature.

[13]  T. Stocker,et al.  Asynchrony of Antarctic and Greenland climate change during the last glacial period , 1998, Nature.

[14]  J. White,et al.  Timing is everything in a game of two hemispheres , 1998, Nature.

[15]  Wallace S. Broecker,et al.  PALEOCEAN CIRCULATION DURING THE LAST DEGLACIATION : A BIPOLAR SEESAW ? , 1998 .

[16]  Stefan Rahmstorf,et al.  Simulation of modern and glacial climates with a coupled global model of intermediate complexity , 1998, Nature.

[17]  J. Overpeck,et al.  Deglacial changes in ocean circulation from an extended radiocarbon calibration , 1998, Nature.

[18]  S. Manabe,et al.  Coupled ocean‐atmosphere model response to freshwater input: Comparison to Younger Dryas Event , 1997 .

[19]  A. Weaver,et al.  Temporal‐geographical meltwater influences on the North Atlantic conveyor: Implications for the Younger Dryas , 1997 .

[20]  S. Rahmstorf On the freshwater forcing and transport of the Atlantic thermohaline circulation , 1996 .

[21]  Carl Wunsch,et al.  An estimate of global ocean circulation and heat fluxes , 1996, Nature.

[22]  Allan R. Robinson,et al.  Ocean processes in climate dynamics : global and mediterranean examples , 1994 .

[23]  Syukuro Manabe,et al.  Century-scale effects of increased atmospheric C02 on the ocean–atmosphere system , 1993, Nature.

[24]  T. Crowley North Atlantic Deep Water cools the southern hemisphere , 1992 .

[25]  J. Marotzke,et al.  Multiple Equilibria of the Global Thermohaline Circulation , 1991 .

[26]  Arnold L. Gordon,et al.  Interocean Exchange of Thermocline Water , 1986 .

[27]  B. Warren Why is no deep water formed in the North Pacific , 1983 .

[28]  Claes Rooth,et al.  Hydrology and ocean circulation , 1982 .

[29]  H. Stommel,et al.  Thermohaline Convection with Two Stable Regimes of Flow , 1961 .