Global Chaos Synchronization of Hyperchaotic Lorenz Systems by Sliding Mode Control

In this paper, new results based on the sliding mode control are derived for the global chaos synchronization of identical hyperchaotic Lorenz systems (Jia, 2007). The stability results for the sliding mode control based synchronization schemes derived in this paper are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode control method is very effective and convenient to achieve global chaos synchronization of the identical hyperchaotic Lorenz systems. Numerical simulations are shown to illustrate and validate the sliding mode control results derived in this paper for the identical hyperchaotic Lorenz systems.

[1]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[2]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[3]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[4]  Morton Nadler,et al.  The stability of motion , 1961 .

[5]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[6]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[7]  M. Lakshmanan,et al.  SECURE COMMUNICATION USING A COMPOUND SIGNAL USING SAMPLED-DATA FEEDBACK , 2003 .

[8]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[9]  K. Vinoth Kumar,et al.  Sliding Mode Control of Induction Motor using Simulation Approach , 2009 .

[10]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[11]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[12]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[13]  L. Chua,et al.  Generalized synchronization of chaos via linear transformations , 1999 .

[14]  Vadim I. Utkin,et al.  Sliding mode control design principles and applications to electric drives , 1993, IEEE Trans. Ind. Electron..

[15]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[16]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[17]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[18]  S. Bowong Adaptive synchronization between two different chaotic dynamical systems , 2007 .

[19]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[20]  Jun-an Lu,et al.  Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system , 2008 .

[21]  Kim-Fung Man,et al.  Online Secure Chatting System Using Discrete Chaotic Map , 2004, Int. J. Bifurc. Chaos.

[22]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[23]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[24]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[25]  Qiang Jia,et al.  Hyperchaos generated from the Lorenz chaotic system and its control , 2007 .

[26]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[27]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .