Generalized fraction-free LU factorization for singular systems with kernel extraction

Abstract Linear systems are usually solved with Gaussian elimination. Especially when multiple right hand sides are involved, an efficient procedure is to provide a factorization of the left hand side. When exact computations are required in an integral domain, complete fraction-free factorization and forward–backward substitutions are useful. This article deals with the case where the left hand side may be singular. In such a case, kernels are required to test a solvability condition and to derive the general form of the solutions. The complete fraction-free algorithms are therefore extended to deal with singular systems and to provide the kernels with exact computations on the same integral domain where the initial data take their entries.

[1]  Peter R. Turner Fraction-free RNS algorithms for solving linear systems , 1997, Proceedings 13th IEEE Sympsoium on Computer Arithmetic.

[2]  Robert M. Corless,et al.  The Turing factorization of a rectangular matrix , 1997, SIGS.

[3]  D. Azulay,et al.  Which pivot to solve linear systems , 2002 .

[5]  Jean-Guillaume Dumas,et al.  Dense Linear Algebra over Word-Size Prime Fields: the FFLAS and FFPACK Packages , 2006, TOMS.

[6]  Singiresu S Rao,et al.  Encyclopedia of vibration , 2002 .

[7]  Thom Mulders A Generalized Sylvester Identity and Fraction-free Random Gaussian Elimination , 2001, J. Symb. Comput..

[8]  Zhendong Wan,et al.  An algorithm to solve integer linear systems exactly using numerical methods , 2006, J. Symb. Comput..

[9]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[10]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[11]  Stefan Schirra,et al.  Robustness and Precision Issues in Geometric Computation , 2000, Handbook of Computational Geometry.

[12]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[13]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[14]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[15]  Eli Packer,et al.  Iterated snap rounding , 2002, Comput. Geom..

[16]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[19]  David Dureisseix,et al.  Information transfer between incompatible finite element meshes: Application to coupled thermo-viscoelasticity , 2006 .

[20]  T. Hwang,et al.  Rank revealing LU factorizations , 1992 .

[21]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[22]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[23]  Peter R. Turner A Simplified Fraction-Free Integer Gauss Elimination Algorithm. , 1995 .

[24]  David J. Jeffrey,et al.  Fraction-free matrix factors: new forms for LU and QR factors , 2008, Frontiers of Computer Science in China.

[25]  Andrew M. Odlyzko,et al.  Discrete Logarithms: The Past and the Future , 2000, Des. Codes Cryptogr..

[26]  Erwin H. Bareiss,et al.  Computational Solutions of Matrix Problems Over an Integral Domain , 1972 .

[27]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[28]  Sivan Toledo,et al.  On the Computation of Null Spaces of Sparse Rectangular Matrices , 2008, SIAM J. Matrix Anal. Appl..

[29]  Ben Noble A Method for Computing the Generalized Inverse of a Matrix , 1966 .

[30]  B. David Saunders,et al.  Fraction Free Gaussian Elimination for Sparse Matrices , 1995, J. Symb. Comput..

[31]  Yongji Wang,et al.  Basic research in computer science and software engineering at SKLCS , 2008, Frontiers of Computer Science in China.

[32]  Charles R. Johnson,et al.  Multiple LU factorizations of a singular matrix , 2006 .