A two-dimensional model of ion composition in the stratosphere: 1. Positive ions

Ion composition measurements have shown that the dominant ions are mainly proton hydrates (PH) (or H{sup +}(H{sub 2}O)n) in the upper stratosphere and mesosphere and nonproton hydrates (NPH) (or H{sup +}X (H{sub 2}O){sub m}) in the lower stratosphere. Theoretical and experimental studies have indicated that the identity of X is almost certainly methyl cyanide (CH{sub 3}CN). This paper reports a two-dimensional model of ion composition from 15 km to the stratopause. The model accounts for the latitudinal variation in the ionization rate by galactic cosmic rays and in the concentration of neutral species which affect ion chemistry. The results obtained indicate several new and interesting features. The altitude of the crossover point of PH over NPH is found to vary with latitude. The PH ions start to dominate as low as 27 km near the poles, whereas at the equatorial latitude, NPH ions remain the dominant ions up to about 45 km. The modeled profiles at 45{degrees}N, the only latitude at which experimental data are available, conform very well to those data. The ion composition is found to be highly dependent on the reaction rate coefficient (K) for the conversion of NPH to PH, which is poorly known. The meridionalmore » distribution of ion composition and a comparison with the available observational data is presented. Finally, the need for future ion composition measurements at other latitudes is emphasized. 28 refs., 9 figs.« less

[1]  S. Hamm,et al.  The interhemispheric distribution and the budget of acetonitrile in the troposphere , 1990 .

[2]  G. Brasseur,et al.  An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere , 1990 .

[3]  G. Beig,et al.  Balloon‐borne measurements of the stratospheric ion conductivity profile at low latitude , 1989 .

[4]  G. Brasseur,et al.  Rossby wave activity in a two‐dimensional model: Closure for wave driving and meridional eddy diffusivity , 1988 .

[5]  G. Beig,et al.  On modelling stratospheric positive ions , 1988 .

[6]  G. Beig,et al.  A theoretical model of the stratospheric positive ions , 1987 .

[7]  H. Schlager,et al.  Balloon-borne composition measurements of stratospheric negative ions and inferred sulfuric acid vapor abundances during the MAP/GLOBUS 1983 campaign , 1987 .

[8]  E. Arijs,et al.  Acetonitrile and sulfuric acid concentrations derived from ion composition measurements during the MAP/GLOBUS 1983 campaign , 1987 .

[9]  J. Wolski,et al.  Documentation of Radiation and Cloud Routines in the NCAR Community Climate Model (CCM1) , 1987 .

[10]  E. Arijs,et al.  Stratospheric positive ion composition measurements between 22 and 45 km: An updated analysis , 1986 .

[11]  G. Brasseur,et al.  Acetonitrile in the stratosphere and implications for positive ion composition , 1986 .

[12]  A. Viggiano,et al.  measurements of some stratospheric ion‐molecule association rates: Implications for ion chemistry and derived HNO3 concentrations in the stratosphere , 1985 .

[13]  D. Hofmann,et al.  Measurements of ion mobility to 30 km , 1985 .

[14]  F. Arnold,et al.  Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry , 1985, Nature.

[15]  E. Arijs,et al.  Recent stratospheric negative ion composition measurements between 22‐ and 45‐km altitude , 1985 .

[16]  T. Ogawa,et al.  A steady state model of negative ions in the lower stratosphere , 1984 .

[17]  John C. Gille,et al.  Implications of the stratospheric water vapor distribution as determined from the Nimbus 7 LIMS experiment. [Limb Infrared Monitor of Stratosphere] , 1984 .

[18]  Guy Brasseur,et al.  Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere , 1984 .

[19]  G. A. Dawson,et al.  Surface acetonitrile near Tucson, Arizona , 1984 .

[20]  F. Arnold,et al.  Upper stratosphere negative ion composition measurements and inferred trace gas abundances , 1984 .

[21]  E. Arijs,et al.  Mass spectrometric measurements of stratospheric ions , 1984 .

[22]  F. Arnold,et al.  Stratospheric in situ measurements of H2SO4 and HSO3 vapors during a volcanically active period , 1984 .

[23]  E. Arijs,et al.  Positive ion composition measurements between 33 and 20 km altitude , 2017 .

[24]  E. Arijs,et al.  Negative ion composition and sulfuric acid vapour in the upper stratosphere , 1983 .

[25]  G. Brasseur,et al.  Modelling of stratospheric ions - A first attempt , 1983 .

[26]  A. Viggiano,et al.  Stratospheric sulfuric acid vapor: New and updated measurements , 1983 .

[27]  D. R. Bates Recombination of small ions in the troposphere and lower stratosphere , 1982 .

[28]  H. Schiff The Stratosphere 1981: Theory and Measurements World Meterological Organization Global Ozone Research and Monitoring Project Report Number 11 Causes and Effects of Stratospheric Ozone Reduction: An Update National Academy of Sciences , 1982 .

[29]  D. Albritton,et al.  Stratospheric negative‐ion reaction rates with H2SO4 , 1982 .

[30]  J. Holton,et al.  The Role of Gravity Wave Induced Drag and Diffusion in the Momentum Budget of the Mesosphere , 1982 .

[31]  E. Arijs,et al.  Stratospheric negative ion composition measurements, ion abundances and related trace gas detection , 1982 .

[32]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[33]  D. Hofmann,et al.  Balloon‐borne measurements of the small ion concentration , 1981 .

[34]  R. Turco Erratum: Effects of meteoric debris on stratospheric aerosols and gases , 1981 .

[35]  E. Ferguson,et al.  Mass spectrometric measurements of fractional ion abundances in the stratosphere—Negative ions , 1981 .

[36]  E. Arijs,et al.  Negative ion composition measurements in the stratosphere , 1981 .

[37]  S. Wlodek,et al.  Stabilities of gas-phase NO3− · (HNO3)n, n ⩽ 6, clusters , 1980 .

[38]  F. Arnold,et al.  First mass analysis of stratospheric negative ions , 1978, Nature.

[39]  H. Böhringer,et al.  Composition measurements of stratospheric positive ions , 1978 .

[40]  M. Heaps Parametrization of the cosmic ray ion-pair production rate above 18 km , 1978 .

[41]  D. Albritton,et al.  Stratospheric positive ion chemistry of formaldehyde and methanol , 1978 .

[42]  E. Arijs,et al.  Mass spectrometric measurement of the positive ion composition in the stratosphere , 1978, Nature.

[43]  F. Fehsenfeld,et al.  The heats of formation of NO3− and NO3− association complexes with HNO3 and HBr , 1977 .

[44]  H. Widdel,et al.  Payload BIII - an instrument package for the measurement of conductivity, concentration an mobility of positive and negative ions in the meosphere , 1977 .

[45]  John P. Boyd,et al.  The Noninteraction of Waves with the Zonally Averaged Flow on a Spherical Earth and the Interrelationships on Eddy Fluxes of Energy, Heat and Momentum , 1976 .

[46]  D. G. Andrews,et al.  Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration , 1976 .

[47]  F. Fehsenfeld,et al.  Gas phase ion chemistry of HNO3 , 1975 .

[48]  V. Mohnen Discussion of the formation of major positive and negative ions up to the 50 km level , 1971 .

[49]  E. Ferguson Negative ion – molecule reactions , 1969 .

[50]  F. Fehsenfeld,et al.  Laboratory measurements of negative ion reactions of atmospheric interest , 1967 .