The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity

[1]  A. Lamond,et al.  The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway , 2016, Oncogene.

[2]  M. Maris,et al.  Pevonedistat (MLN4924), a First‐in‐Class NEDD8‐activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study , 2015, British journal of haematology.

[3]  D. Xirodimas,et al.  Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. , 2015, Endocrine-related cancer.

[4]  M. Peter,et al.  Protein neddylation: beyond cullin–RING ligases , 2014, Nature Reviews Molecular Cell Biology.

[5]  Shelly C. Lu,et al.  Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer , 2014, Oncotarget.

[6]  Q. Gao,et al.  Overactivated neddylation pathway as a therapeutic target in lung cancer. , 2014, Journal of the National Cancer Institute.

[7]  S. Sorrells,et al.  Analysis of Apoptosis in Zebrafish Embryos by Whole-mount Immunofluorescence to Detect Activated Caspase 3 , 2013, Journal of visualized experiments : JoVE.

[8]  A. Thompson,et al.  p53-Based cyclotherapy: exploiting the ‘guardian of the genome' to protect normal cells from cytotoxic therapy , 2013, British Journal of Cancer.

[9]  Ingeborg M. M. van Leeuwen Cyclotherapy: opening a therapeutic window in cancer treatment , 2012, Oncotarget.

[10]  S. Laín,et al.  An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells , 2012, Cell cycle.

[11]  Michael J. Emanuele,et al.  Global Identification of Modular Cullin-RING Ligase Substrates , 2011, Cell.

[12]  D. DeAngelo,et al.  Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer , 2011, Expert opinion on therapeutic targets.

[13]  Anindya Dutta,et al.  NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. , 2010, Cancer research.

[14]  Peter G. Smith,et al.  The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy. , 2010, Genes & cancer.

[15]  M. Dimopoulos,et al.  Hematology: First-line bortezomib benefits patients with multiple myeloma , 2009, Nature Reviews Clinical Oncology.

[16]  D. Lane,et al.  Specific activation of the p53 pathway by low dose actinomycin D: A new route to p53 based cyclotherapy , 2009, Cell cycle.

[17]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[18]  K. Kinzler,et al.  A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53 , 2009, Proceedings of the National Academy of Sciences.

[19]  D. Xirodimas,et al.  Novel substrates and functions for the ubiquitin-like molecule NEDD8. , 2008, Biochemical Society transactions.

[20]  E. Lane,et al.  Detection of the p53 response in zebrafish embryos using new monoclonal antibodies , 2008, Oncogene.

[21]  Kongthawat Chairatvit,et al.  Control of cell proliferation via elevated NEDD8 conjugation in oral squamous cell carcinoma , 2007, Molecular and Cellular Biochemistry.

[22]  Youngjo Kim,et al.  Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways , 2007, Cell Division.

[23]  Matthias Dobbelstein,et al.  Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. , 2006, Cancer research.

[24]  D. Lane,et al.  p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress , 2006, Cell Death and Differentiation.

[25]  M. Blagosklonny,et al.  Analysis of FDA Approved Anticancer Drugs Reveals the Future of Cancer Therapy , 2004, Cell cycle.

[26]  M. Kent,et al.  The State of the Art of the Zebrafish Model for Toxicology and Toxicologic Pathology Research—Advantages and Current Limitations , 2003, Toxicologic pathology.

[27]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[28]  M. Blagosklonny,et al.  Exploiting cancer cell cycling for selective protection of normal cells. , 2001, Cancer research.

[29]  M V Chernov,et al.  A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. , 1999, Science.

[30]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[31]  R. Perry,et al.  Inhibition of RNA synthesis by actinomycin D: Characteristic dose‐response of different RNA species , 1970, Journal of cellular physiology.

[32]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .