Accommodation coefficient of HOBr on deliquescent sodium bromide aerosol particles

Abstract. Uptake of HOBr on sea salt aerosol, sea salt brine or ice is believed to be a key process providing a source of photolabile bromine (Br 2 ) and sustaining ozone depletion cycles in the Arctic troposphere. In the present study, uptake of HOBr on sodium bromide (NaBr) aerosol particles was investigated at an extremely low HOBr concentration of 300 cm -3 using the short-lived radioactive isotopes 83-86 Br. Under these conditions, at maximum one HOBr molecule was taken up per particle. The rate of uptake was clearly limited by the mass accommodation coefficient, which was calculated to be 0.6 ± 0.2. This value is a factor of 10 larger than estimates used in earlier models. The atmospheric implications are discussed using the box model "MOCCA'', showing that the increase of the accommodation coefficient of HOBr by a factor of 10 only slightly affects net ozone loss, but significantly increases chlorine release.

[1]  M. Ammann,et al.  Chemical characterization of short-lived selenium and their daughter isotopes from thermal neutron induced fission of 235U at a gas-jet facility , 2002 .

[2]  Andreas Bott,et al.  Modeling halogen chemistry in the marine boundary layer - 1. Cloud-free MBL , 2002 .

[3]  P. Mirabel,et al.  Chemical transformation of bromine chloride at the air/water interface , 2001 .

[4]  U. Baltensperger,et al.  Heterogeneous reaction of NO2 on diesel soot particles. , 2001, Environmental science & technology.

[5]  V. Malvestuto,et al.  A deliquescence model for alkali halide nuclei , 2001 .

[6]  D. W. Margerum,et al.  Equilibrium and kinetics of bromine chloride hydrolysis. , 2001, Environmental science & technology.

[7]  I. Galbally,et al.  Mid‐latitude marine boundary‐layer ozone destruction at visible sunrise observed at Cape Grim, Tasmania, 41°S , 2000 .

[8]  J. Abbatt,et al.  Infrared Observations of the Response of NaCl, MgCl2, NH4HSO4, and NH4NO3 Aerosols to Changes in Relative Humidity from 298 to 238 K , 2000 .

[9]  Hiroshi L. Tanaka,et al.  Sunrise ozone destruction found in the sub‐tropical marine boundary layer , 1999 .

[10]  J. Crowley,et al.  Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions , 1999 .

[11]  U. Platt,et al.  Chemistry of Halogen Oxides in the Troposphere: Comparison of Model Calculations with Recent Field Data , 1999 .

[12]  U. Platt,et al.  Observation of Filterable Bromine Variabilities During Arctic Tropospheric Ozone Depletion Events in High (1hour) Time Resolution , 1999 .

[13]  U. Baltensperger,et al.  Heterogeneous formation of nitrous acid (HONO) on soot aerosol particles , 1999 .

[14]  U. Baltensperger,et al.  Heterogeneous Production of Nitrous Acid on Soot in Polluted Air Masses. , 1998 .

[15]  R. A. Cox,et al.  Kinetics of the Heterogeneous Reaction of HNO3 with NaCl: Effect of Water Vapor , 1998 .

[16]  U. Baltensperger,et al.  Heterogeneous production of nitrous acid on soot in polluted air masses , 1998, Nature.

[17]  M. Salmeron,et al.  Adsorption of Water on Alkali Halide Surfaces Studied by Scanning Polarization Force Microscopy , 1998 .

[18]  H. Bergh,et al.  Heterogeneous Kinetics of the Uptake of HOBr on Solid Alkali Metal Halides at Ambient Temperature , 1998 .

[19]  C. Zetzsch,et al.  Heterogeneous Interconversion Reactions of BrNO2, ClNO2, Br2 and Cl2. , 1998 .

[20]  G. C. G. Waschewsky,et al.  Heterogeneous Interactions of HOBr, HNO3, O3, and NO2 with Deliquescent NaCl Aerosols at Room Temperature , 1998 .

[21]  C. Zetzsch,et al.  Heterogeneous Interconversion Reactions of BrNO2, ClNO2, Br2, and Cl2 , 1998 .

[22]  O. Schrems,et al.  Tropospheric ozone depletion in polar regions A comparison of observations in the Arctic and Antarctic , 1998 .

[23]  U. Platt,et al.  DOAS-observation of halogen radical-catalysed arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Ålesund, Spitsbergen , 1997 .

[24]  M. Rossi,et al.  Real‐time kinetics of the uptake of HOBr and BrONO2 on ice and in the presence of HCl in the temperature range 190–200 K , 1997 .

[25]  B. C. Garrett,et al.  Understanding the Mechanism for the Mass Accommodation of Ethanol by a Water Droplet , 1997 .

[26]  D. R. Hanson Surface-Specific Reactions on Liquids , 1997 .

[27]  R. N. Schindler,et al.  Experimental verification of gas phase bromine enrichment in reactions of HOBr with sea salt doped ice surfaces , 1997 .

[28]  A. Pohorille,et al.  Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study. , 1997, The journal of physical chemistry. B.

[29]  U. Baltensperger,et al.  Heterogeneous Chemical Processing of 13NO2 by Monodisperse Carbon Aerosols at Very Low Concentrations , 1996 .

[30]  J. McConnell,et al.  Autocatalytic release of bromine from Arctic snow pack during polar sunrise , 1996 .

[31]  B. Finlayson‐Pitts,et al.  KNUDSEN CELL STUDIES OF THE UPTAKE OF GASEOUS HNO3 AND OTHER OXIDES OF NITROGEN ON SOLID NACL : THE ROLE OF SURFACE-ADSORBED WATER , 1996 .

[32]  P. Crutzen,et al.  A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer , 1996, Nature.

[33]  A. Sinha,et al.  Near-Threshold Photodissociation Dynamics of HOBr: Determination of Product State Distribution, Vector Correlation, and Heat of Formation , 1996 .

[34]  Paul J. Crutzen,et al.  Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea , 1996 .

[35]  H. Burtscher,et al.  Growth and structural change of combustion aerosols at high relative humidity. , 1995, Environmental science & technology.

[36]  M. Mozurkewich Mechanisms for the release of halogens from sea-salt particles by free radical reactions , 1995 .

[37]  M. Zahniser,et al.  Reactive Uptake of Cl2(g) and Br2(g) by Aqueous Surfaces as a Function of Br- and I- Ion Concentration: The Effect of Chemical Reaction at the Interface , 1995 .

[38]  J. Orlando,et al.  Gas-Phase UV/VIS Absorption Spectra of HOBr and Br2O. , 1995 .

[39]  U. Platt,et al.  A possible mechanism for combined chlorine and bromine catalyzed destruction of tropospheric ozone in the Arctic , 1995 .

[40]  M. Hausmann,et al.  Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992 , 1994 .

[41]  J. Abbatt,et al.  Heterogeneous reaction of HOBr with HBr and HCl on ice surfaces at 228 k , 1994 .

[42]  D. R. Hanson,et al.  Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations , 1994 .

[43]  D. Jacob,et al.  Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols , 1992, Nature.

[44]  P. Shepson,et al.  Depletion of lower tropospheric ozone during arctic spring : the Polar Sunrise Experiment 1988 , 1990 .

[45]  F. E. Livingston,et al.  Ozone destruction and bromine photochemistry at ground level in the Arctic spring , 1990, Nature.

[46]  Masaaki Sugie,et al.  The rotational spectra, molecular structure, dipole moment, and hyperfine constants of HOBr and DOBr , 1989 .

[47]  Sheldon Landsberger,et al.  Anthropogenic aerosols and gases in the lower troposphere at Alert Canada in April 1986 , 1989 .

[48]  P. Crutzen,et al.  Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere , 1988, Nature.

[49]  J. Aubard,et al.  Kinetic study of the fast halogen-trihalide ion equilibria in protic media by the Raman-laser temperature-jump technique. A non-diffusion-controlled ion-molecule reaction , 1986 .

[50]  S. Oltmans,et al.  Surface ozone distributions and variations from 1973–1984: Measurements at the NOAA Geophysical Monitoring for Climatic Change Baseline Observatories , 1986 .

[51]  A. Lazrus,et al.  Measurements of stratospheric bromine , 1984 .

[52]  J. Chirife,et al.  A World Survey of Water Activity of Selected Saturated Salt Solutions used as Standards at 25°C , 1984 .

[53]  A. Lazrus,et al.  Preparation of tetrabutylammonium hydroxide for atmospheric sampling of acidic halogen gases , 1983 .

[54]  Z. A. Schelly,et al.  Use of ion-selective electrodes for monitoring oscillating reactions. 1. Potential response of the silver halide membrane electrodes to hypohalous acids , 1982 .

[55]  S. Oltmans Surface ozone measurements in clean air , 1981 .

[56]  I. Galbally,et al.  Destruction of ozone at the earth's surface , 1980 .

[57]  Manfred Eigen,et al.  The Kinetics of Halogen Hydrolysis , 1962 .

[58]  A. C. Wahl,et al.  Radioactivity Applied to Chemistry , 1951 .

[59]  F. Long,et al.  The Rate of Exchange between Chloride Ion and Chlorine in Aqueous Solution , 1936 .

[60]  M. Amman Using 13N as tracer in heterogeneous atmospheric chemistry experiments , 2001 .

[61]  M. Amman,et al.  On-line gas-phase separation of short-lived bromine nuclides from precursor selenium , 2000 .

[62]  Luria,et al.  DOAS measurements of tropospheric bromine oxide in mid-latitudes , 1999, Science.

[63]  R. Benedix Taschenbuch der Chemie , 1997 .

[64]  J. Orlando,et al.  Gas-Phase UV/Visible Absorption Spectra of HOBr and Br2O , 1995 .

[65]  U. Baltensperger,et al.  Thermochromatographic Investigation of 13N Labelled Nitrous Gases and of Fission Noble Gases at Low Temperatures , 1995 .

[66]  E. R. Blatchley,et al.  Effective henry's law constants for free chlorine and free bromine , 1992 .

[67]  L. Barrie,et al.  Photochemical bromine production implicated in Arctic boundary-layer ozone depletion , 1992, Nature.

[68]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[69]  W. Evans,et al.  Boundary layer ozone depletion during AGASP-II , 1989 .

[70]  B. Eichler,et al.  Vacuum-Thermochromatography of Carrier-free Species , 1986 .

[71]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[72]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[73]  V. I. Perelʹman Taschenbuch der Chemie , 1956 .

[74]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .