Temporospatial components of brain ERPs as biomarkers for Alzheimer's disease

Developing biomarkers that distinguish individuals with Alzheimer's disease (AD) from those with normal cognition remains a crucial goal for improving the health of older adults. We investigated adding brain spatial information to temporal event‐related potentials (ERPs) to increase AD identification accuracy over temporal ERPs alone.

[1]  Marcos Dipinto,et al.  Discriminant analysis , 2020, Predictive Analytics.

[2]  W. Walter,et al.  Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain , 1964, Nature.

[3]  R. Chapman,et al.  EP Component Identification and Measurement by Principal Components-Analysis , 1995, Brain and Cognition.

[4]  R. Chapman Evoked responses to relevant and irrelevant visual stimuli while problem solving , 1965 .

[5]  R. Chapman,et al.  Brain event-related potentials: Diagnosing early-stage Alzheimer's disease , 2007, Neurobiology of Aging.

[6]  R. Chapman,et al.  Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage , 2015, Brain Research.

[7]  J. Polich Clinical application of the P300 event-related brain potential. , 2004, Physical medicine and rehabilitation clinics of North America.

[8]  J. Ingelfinger,et al.  Biostatistics in clinical medicine , 1983 .

[9]  Joseph Dien,et al.  The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data , 2010, Journal of Neuroscience Methods.

[10]  M. Roth,et al.  The Association Between Quantitative Measures of Dementia and of Senile Change in the Cerebral Grey Matter of Elderly Subjects , 1968, British Journal of Psychiatry.

[11]  Duane T. Wegener,et al.  Evaluating the use of exploratory factor analysis in psychological research. , 1999 .

[12]  R. Chapman,et al.  ERP C250 shows the elderly (cognitively normal, Alzheimer’s disease) store more stimuli in short-term memory than Young Adults do , 2016, Clinical Neurophysiology.

[13]  ROBERT M. CHAPMAN,et al.  Evoked Responses to Numerical and Non-Numerical Visual Stimuli while Problem Solving , 1964, Nature.

[14]  N. Toschi,et al.  Alzheimer's disease biomarker-guided diagnostic workflow using the added value of six combined cerebrospinal fluid candidates: Aβ1–42, total-tau, phosphorylated-tau, NFL, neurogranin, and YKL-40 , 2018, Alzheimer's & Dementia.

[15]  V. Leirer,et al.  Development and validation of a geriatric depression screening scale: a preliminary report. , 1982, Journal of psychiatric research.

[16]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[17]  E. Walker,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[18]  Margot J. Taylor,et al.  Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. , 2000, Psychophysiology.

[19]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[20]  Nick C Fox,et al.  Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria , 2014, The Lancet Neurology.

[21]  M. Sliwinski,et al.  Development and validation of a model for estimating premorbid verbal intelligence in the elderly. , 1991, Journal of clinical and experimental neuropsychology.

[22]  M. Mcgregor,et al.  BIOSTATISTICS IN CLINICAL MEDICINE. , 1987 .

[23]  Joseph Dien,et al.  Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. , 2010, Psychophysiology.

[24]  R M Chapman,et al.  Memory processes and evoked potentials. , 1981, Canadian journal of psychology.

[25]  C. Tenke,et al.  Trusting in or breaking with convention: Towards a renaissance of principal components analysis in electrophysiology , 2005, Clinical Neurophysiology.

[26]  Edward Awh,et al.  The Role of Spatial Selective Attention in Working Memory for Locations: Evidence from Event-Related Potentials , 2000, Journal of Cognitive Neuroscience.

[27]  E. Donchin,et al.  Spatiotemporal analysis of the late ERP responses to deviant stimuli. , 2001, Psychophysiology.

[28]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[29]  Robert M. Chapman,et al.  Brain ERP components predict which individuals progress to Alzheimer's disease and which do not , 2011, Neurobiology of Aging.

[30]  Joseph Dien,et al.  Addressing Misallocation of Variance in Principal Components Analysis of Event-Related Potentials , 2004, Brain Topography.

[31]  Derick R. Peterson,et al.  Plasma phospholipids identify antecedent memory impairment in older adults , 2014, Nature Medicine.

[32]  R. Chapman,et al.  Please Scroll down for Article Journal of Clinical and Experimental Neuropsychology Diagnosis of Alzheimer's Disease Using Neuropsychological Testing Improved by Multivariate Analyses , 2022 .

[33]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[34]  J. Morris,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer's disease , 1989, Neurology.

[35]  S. Hillyard,et al.  Electrophysiology of Cognition , 2011 .

[36]  Michael C. Pyryt Human cognitive abilities: A survey of factor analytic studies , 1998 .

[37]  R M Chapman,et al.  Short-term memory: the "storage" component of human brain responses predicts recall. , 1978, Science.

[38]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.