Petits textes pour grandes masses de données

. Maitrisee, l'omnipresence des donnees offre aujourd'hui un potentiel de services sans precedent. Dans une optique centree personne, nous proposons une solution etendue pour l'ex-ploitation de masses de donnees en flux. Notre solution, nommee Stream2Text, s'appuie sur un raffinement personnalise et continu des donnees, et produit des textes (en langue naturelle) qui resument de maniere personnalisee les donnees interessantes pour l'utilisateur. Les flux textuels produits permettent un monitoring adapte a un large spectre d'utilisateurs et peut etre partage dans un reseau social ou utilise individuellement a partir de dispositifs mobiles.

[1]  Ion Androutsopoulos,et al.  Generating Natural Language Descriptions from OWL Ontologies: the NaturalOWL System , 2013, J. Artif. Intell. Res..

[2]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[3]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[4]  Ehud Reiter,et al.  Book Reviews: Building Natural Language Generation Systems , 2000, CL.

[5]  Ehud Reiter,et al.  Generating Approximate Geographic Descriptions , 2009, ENLG.

[6]  Jennifer Widom,et al.  STREAM: The Stanford Data Stream Management System , 2016, Data Stream Management.

[7]  Cyril Labbé,et al.  Revisiting formal ordering in data stream querying , 2012, SAC '12.

[8]  Fabiola S. F. Pereira,et al.  Evaluation of Conditional Preference Queries , 2010, J. Inf. Data Manag..

[9]  Albert Gatt,et al.  From data to text in the Neonatal Intensive Care Unit: Using NLG technology for decision support and information management , 2009, AI Commun..

[10]  Georgia Koutrika,et al.  Representation, composition and application of preferences in databases , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[11]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[12]  Graham Cormode,et al.  An improved data stream summary: the count-min sketch and its applications , 2004, J. Algorithms.

[13]  François Portet,et al.  Towards an Abstractive Opinion Summarisation of Multiple Reviews in the Tourism Domain , 2012, SDAD@ECML/PKDD.

[14]  Jeffrey Davis,et al.  Continuous analytics over discontinuous streams , 2010, SIGMOD Conference.

[15]  Sandra de Amo,et al.  Top-k Context-Aware Queries on Streams , 2012, DEXA.

[16]  Albert Gatt,et al.  SimpleNLG: A Realisation Engine for Practical Applications , 2009, ENLG.

[17]  Bernhard Seeger,et al.  Progressive skyline computation in database systems , 2005, TODS.

[18]  Jim Hunter,et al.  Automatic Generation of Textual Summaries from Neonatal Intensive Care Data , 2007, AIME.

[19]  Cyril Labbé,et al.  An algebric window model for data stream management , 2010, MobiDE '10.

[20]  Yannis Manolopoulos,et al.  Continuous Processing of Preference Queries in Data Streams , 2009, Conference on Current Trends in Theory and Practice of Informatics.

[21]  Emiel Krahmer,et al.  Empirical Methods in Natural Language Generation: Data-oriented Methods and Empirical Evaluation , 2010, Empirical Methods in Natural Language Generation.