Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses.

The formation of self-organized micro- and nano-structured surfaces on nickel via both above surface growth (ASG) and below surface growth (BSG) mechanisms using femtosecond laser pulse illumination is reported. Detailed stepped growth experiments demonstrate that conical mound-shaped surface structure development is characterized by a balance of growth mechanisms including scattering from surface structures and geometric effects causing preferential ablation of the valleys, flow of the surface melt, and redeposition of ablated material; all of which are influenced by the laser fluence and the number of laser shots on the sample. BSG-mound formation is dominated by scattering, while ASG-mound formation is dominated by material flow and redeposition. This is the first demonstration to our knowledge of the use of femtosecond laser pulses to fabricate metallic surface structures that rise above the original surface. These results are useful in understanding the details of multi-pulse femtosecond laser interaction with metals.

[1]  Ching-yue Wang,et al.  The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy , 2006 .

[2]  I. Alexandrou,et al.  Laser microstructuring of Si surfaces for low-threshold field-electron emission , 2004 .

[3]  C. Liang,et al.  Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses , 2008 .

[4]  Y. Yao,et al.  Effect of Processing Medium and Condition on Absorption Enhancement of Femtosecond Laser Treated a-Si:H Thin Film , 2011 .

[5]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[6]  Mool C. Gupta,et al.  Ultralow reflectance metal surfaces by ultrafast laser texturing , 2010 .

[7]  B. Beaugiraud,et al.  Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment , 2011 .

[8]  Chunlei Guo,et al.  Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni , 2012 .

[9]  N. G. Semaltianos,et al.  Femtosecond laser ablation characteristics of nickel-based superalloy C263 , 2009 .

[10]  E. Mazur,et al.  Femtosecond-Laser-Assisted Microstructuring of Silicon Surfaces , 2003 .

[11]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[12]  D. Lowndes,et al.  Laser ablation and column formation in silicon under oxygen-rich atmospheres , 2000 .

[13]  G. A. Shafeev,et al.  Formation of conical microstructures upon laser evaporation of solids , 2001 .

[14]  Peter Englezos,et al.  Patterned superhydrophobic metallic surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  Eric Mazur,et al.  Luminescence of black silicon , 2008 .

[16]  A. Vorobyev,et al.  Laser turns silicon superwicking. , 2010, Optics express.

[17]  E. Mazur,et al.  Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses , 2001, CLEO 2001.

[18]  Eric Mazur,et al.  Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon , 2004 .

[19]  Jörg Krüger,et al.  Femtosecond laser-induced periodic surface structures , 2012 .

[20]  Kurt W. Kolasinski,et al.  Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces , 2007 .

[21]  Chunlei Guo,et al.  Direct femtosecond laser surface nano/microstructuring and its applications , 2013 .

[22]  R. E. Palmer,et al.  Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6 , 2004 .

[23]  Jingtao Zhu,et al.  Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations , 2005 .

[24]  Eric Mazur,et al.  Femtosecond laser-induced formation of spikes on silicon , 2000 .

[25]  G. A. Shafeev,et al.  Formation of conic microstructures upon pulsed laser evaporation of solids , 2000 .

[26]  J. Dumas,et al.  Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization. , 2012, Journal of biomedical materials research. Part A.

[27]  Gang Li,et al.  Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser , 2009 .

[28]  T. Glynn,et al.  The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air , 2004 .

[29]  N. Zhang,et al.  Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility. , 2009, Optics express.

[30]  Ph. Delaporte,et al.  Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication , 2008 .

[31]  B. K. Nayak,et al.  Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films , 2007 .

[32]  M. Sentis,et al.  Femtosecond ablation of ultrahard materials , 2002 .

[33]  B. K. Nayak,et al.  Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin , 2010 .

[34]  N. G. Semaltianos,et al.  Femtosecond laser surface texturing of a nickel-based superalloy , 2008 .

[35]  Masahito Katto,et al.  Microstructures formation on titanium plate by femtosecond laser ablation , 2007 .

[36]  K. Kolasinski,et al.  Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation , 2008 .

[37]  John E. Sipe,et al.  Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon , 1982 .

[38]  Hongliang Wang,et al.  Femtosecond Laser-Induced Simultaneous Surface Texturing and Crystallization of a-Si:H Thin Film: Absorption and Crystallinity , 2012 .

[39]  M Radnai,et al.  Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. , 2003, Biomaterials.

[40]  I Zergioti,et al.  Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties. , 2008, Applied optics.

[41]  Chunlei Guo,et al.  Enhanced absorptance of gold following multipulse femtosecond laser ablation , 2005 .

[42]  Eric Mazur,et al.  Pulsed-laser hyperdoping and surface texturing for photovoltaics , 2011 .

[43]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[44]  M. Varela,et al.  Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation , 1998 .

[45]  Jason D. Fowlkes,et al.  Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6 , 1999 .

[46]  B. Chichkov,et al.  Formation of corrugated and porous steel surfaces by femtosecond laser irradiation , 2012 .

[47]  Chunlei Guo,et al.  Femtosecond laser structuring of titanium implants , 2007 .

[48]  Jeff F. Young,et al.  Laser-induced periodic surface structure. I. Theory , 1983 .

[49]  Eric Mazur,et al.  Role of the Background Gas in the Morphology and Optical Properties of Laser-Microstructured Silicon , 2005 .

[50]  Costas Fotakis,et al.  Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions , 2012 .

[51]  A. Singh,et al.  Laser damage studies of silicon surfaces using ultra-short laser pulses , 2002 .

[52]  F. Sánchez,et al.  Characterization of the progressive growth of columns by excimer laser irradiation of silicon , 1999 .

[53]  K. Kolasinski,et al.  Solidification driven extrusion of spikes during laser melting of silicon pillars , 2006 .

[54]  Jason D. Fowlkes,et al.  Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation , 1999 .

[55]  Eric Mazur,et al.  Silicon Surface Morphologies after Femtosecond Laser Irradiation , 2006 .

[56]  K. Kolasinski,et al.  Laser assisted and wet chemical etching of silicon nanostructures , 2006 .

[57]  Mool C. Gupta,et al.  Optical properties of silicon light trapping structures for photovoltaics , 2010 .

[58]  Mool C. Gupta,et al.  Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation , 2010 .

[59]  Elena P Ivanova,et al.  Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[60]  E. Mazur,et al.  Light trapping for thin silicon solar cells by femtosecond laser texturing , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[61]  M. Varela,et al.  Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation , 1996 .

[62]  John E. Sipe,et al.  Laser Induced Periodic Surface Structure , 1982 .

[63]  A. Vorobyev,et al.  Water sprints uphill on glass , 2010 .

[64]  E. Mazur,et al.  Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask , 2003 .

[65]  Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation , 2007 .

[66]  Anthony J. Pedraza,et al.  Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres , 2000 .