Fabrication of mixed matrix hollow fibers with intimate polymer–zeolite interface for gas separation

It has been demonstrated that a novel p-xylenediamine/methanol soaking method could efficiently remove the polymer–zeolite interface defects of the mixed-matrix structure. In this work, the mixed-matrix structure is in the form of an ultrathin (1.5–3 m) polysulfone/ zeolite beta mixed-matrix layer that is supported by a neat Matrimid ® layer in dual-layer composite hollow fibers. The particle’s loading in this thin layer has reached 30 wt %. The ideal selectivities of the mixed-matrix hollow fibers (30 wt % of zeolite) for O2/N2 and CO2/CH4 separation were roughly 30 and 50% superior to that of the neat PSF/ Matrimid ® hollow fibers, respectively. Investigation of the morphology of the mixedmatrix selective layer and its relation with gas separation performance indicated that without p-xylenediamine/methanol solution treatment, the outer layer showed various polymer–zeolite interface structures in different fibers with the same heat treatment procedures; this situation might lead to the different selectivities after coating. However, by applying p-xylenediamine/methanol processing on the fibers before thermal treatment, the fibers obtained a more uniform structure and improved attachment between polymer matrix and zeolite surface. Hydrogen bonding was proposed as the possible mechanism for the tighter attachment between the two phases. The improvement of separation efficiency was presumably related to the polymer chain rigidification, partial pore blockage, and/or favorable interaction between the gas penetrants and zeolite framework. © 2006 American Institute of Chemical Engineers AIChE J, 52: 2898 –2908, 2006

[1]  Zhen Huang,et al.  Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation , 2006 .

[2]  Lan Ying Jiang,et al.  An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation , 2006 .

[3]  Tai‐Shung Chung,et al.  Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes , 2006 .

[4]  Zhen Huang,et al.  Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture , 2006 .

[5]  Yi Li,et al.  A New Testing System To Determine the O2/N2 Mixed-Gas Permeation through Hollow-Fiber Membranes with an Oxygen Analyzer , 2006 .

[6]  S. Kulprathipanja,et al.  The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes , 2005 .

[7]  P. Tin,et al.  Carbon–zeolite composite membranes for gas separation , 2005 .

[8]  Zhen Huang,et al.  Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes , 2005 .

[9]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[10]  Tai‐Shung Chung,et al.  Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation , 2004 .

[11]  Dongfei Li,et al.  Morphological aspects and structure control of dual-layer asymmetric hollow fiber membranes formed by a simultaneous co-extrusion approach , 2004 .

[12]  N. A. Ochoa,et al.  ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation , 2004 .

[13]  Chun Cao,et al.  Fabrication of Matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation , 2004 .

[14]  Stephen J. Miller,et al.  Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves , 2003 .

[15]  J. Lukáš,et al.  Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes , 2003 .

[16]  Stephen J. Miller,et al.  Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior , 2003 .

[17]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[18]  Tai‐Shung Chung,et al.  Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes , 2003 .

[19]  Huanting Wang,et al.  Homogeneous polymer–zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals , 2002 .

[20]  Katsuki Kusakabe,et al.  Influence of alkali cations on permeation properties of Y-type zeolite membranes , 2002 .

[21]  M. Tsapatsis,et al.  Preparation and characterization of a glassy fluorinated polyimide zeolite-mixed matrix membrane , 2002 .

[22]  A. J. Hill,et al.  Ultrapermeable, Reverse-Selective Nanocomposite Membranes , 2002, Science.

[23]  Y. Kang,et al.  Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine , 2001 .

[24]  R. Mahajan Formation, characterization and modeling of mixed matrix membrane materials , 2000 .

[25]  B. Freeman,et al.  Membrane formation and modification , 1999 .

[26]  R. T. Yang,et al.  Mixed cation zeolites: LixAgy‐X as a superior adsorbent for air separation , 1999 .

[27]  J. P. Boom,et al.  Transport through zeolite filled polymeric membranes , 1998 .

[28]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[29]  W. Koros,et al.  Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles , 1997 .

[30]  W. Koros,et al.  Significance of entropic selectivity for advanced gas separation membranes , 1996 .

[31]  I. Vankelecom,et al.  Silylation To Improve Incorporation of Zeolites in Polyimide Films , 1996 .

[32]  Tai‐Shung Chung,et al.  A Review of Microporous Composite Polymeric Membrane Technology for Air-Separation , 1996, Engineering Plastics.

[33]  K. Khulbe,et al.  Adsorption of methane, ethane and ethylene on molecular sieve zeolites , 1996 .

[34]  I. Vankelecom,et al.  INCORPORATION OF ZEOLITES IN POLYIMIDE MEMBRANES , 1995 .

[35]  T. M. Gür Permselectivity of zeolite filled polysulfone gas separation membranes , 1994 .

[36]  L. Yılmaz,et al.  Gas permeation characteristics of polymer-zeolite mixed matrix membranes , 1994 .

[37]  Ivo F. J. Vankelecom,et al.  Parameters Influencing Zeolite Incorporation in PDMS Membranes , 1994 .

[38]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[39]  R. Behling,et al.  Preparation and characterization of thin-film zeolite–PDMS composite membranes☆ , 1992 .

[40]  W. Koros,et al.  Gas transport properties of biphenol polysulfones , 1992 .

[41]  R. Lichtenthaler,et al.  Sorption isotherms of alcohols in zeolite-filled silicone rubber and in PVA-composite membranes , 1992 .

[42]  K. Peinemann,et al.  Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation , 1991 .

[43]  I. Pinnau,et al.  Surface fluorination of polysulfone asymmetric membranes and films , 1991 .

[44]  Robert B. Moore,et al.  A new multiplet-cluster model for the morphology of random ionomers , 1990 .

[45]  D. Fraenkel,et al.  A zeolite/polymer membrane for separation of ethanol-water azeotrope , 1989 .

[46]  Zeolites as reinforcing fillers in an elastomer , 1988 .

[47]  C. A. Smolders,et al.  Zeolite-filled silicone rubber membranes : Part 1. Membrane preparation and pervaporation results , 1987 .

[48]  D. Kemp,et al.  The diffusion time lag in polymer membranes containing adsorptive fillers , 2007 .

[49]  D. R. Paul EFFECT OF IMMOBILIZING ADSORPTION ON THE DIFFUSION TIME LAG , 1969 .