Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating

[1]  A. Gromov,et al.  Silicon carbide obtaining with DC arc-discharge plasma: synthesis, product characterization and purification , 2021 .

[2]  J. Tour,et al.  Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. , 2021, ACS nano.

[3]  Jin-an Shi,et al.  A stable low-temperature H2-production catalyst by crowding Pt on α-MoC , 2021, Nature.

[4]  K. Chou,et al.  Synthesis of high purity nano-sized transition-metal carbides , 2020 .

[5]  G. Ceder,et al.  The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides , 2020, Nature Materials.

[6]  B. Dunn,et al.  A general method to synthesize and sinter bulk ceramics in seconds , 2020, Science.

[7]  Qiyuan He,et al.  Phase engineering of nanomaterials , 2020, Nature Reviews Chemistry.

[8]  J. Tour,et al.  Gram-scale bottom-up flash graphene synthesis , 2020, Nature.

[9]  K. Ishizaki,et al.  Biomorphic Cellular Silicon Carbide Nanocrystal-Based Ceramics Derived from Wood for Use as Thermally Stable and Lightweight Structural Materials , 2019, ACS Applied Nano Materials.

[10]  Wei Li,et al.  The effect of carbon black morphology to the thermal conductivity of natural rubber composites , 2019, International Journal of Heat and Mass Transfer.

[11]  Hyun‐Wook Lee,et al.  Ordered Mesoporous Metastable α‐MoC1−x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity , 2019, Advanced Functional Materials.

[12]  Yue-dong Wu,et al.  Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction–carburization process , 2019, Journal of Alloys and Compounds.

[13]  Hee Jo Song,et al.  Ultrafine α‐Phase Molybdenum Carbide Decorated with Platinum Nanoparticles for Efficient Hydrogen Production in Acidic and Alkaline Media , 2019, Advanced science.

[14]  Lichun Yang,et al.  Structural Design and Electronic Modulation of Transition‐Metal‐Carbide Electrocatalysts toward Efficient Hydrogen Evolution , 2018, Advanced materials.

[15]  Cormac Toher,et al.  High-entropy high-hardness metal carbides discovered by entropy descriptors , 2018, Nature Communications.

[16]  William E Lee,et al.  Reactive carbothermal reduction of ZrC and ZrOC using Spark Plasma Sintering , 2018, Advances in Applied Ceramics.

[17]  Steven D. Lacey,et al.  Carbothermal shock synthesis of high-entropy-alloy nanoparticles , 2018, Science.

[18]  Gerbrand Ceder,et al.  Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides , 2017 .

[19]  L. Gu,et al.  Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction , 2017, Science.

[20]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts , 2017, Nature.

[21]  Da-li Zhou,et al.  Preparation of nano-sized titanium carbide particles via a vacuum carbothermal reduction approach coupled with purification under hydrogen/argon mixed gas , 2017 .

[22]  W. Goddard,et al.  Atomic H-Induced Mo2C Hybrid as an Active and Stable Bifunctional Electrocatalyst. , 2017, ACS nano.

[23]  Yuhan Sun,et al.  Cobalt carbide nanoprisms for direct production of lower olefins from syngas , 2016, Nature.

[24]  R. Ma,et al.  Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst. , 2015, Angewandte Chemie.

[25]  Brian M. Leonard,et al.  Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. , 2014, Angewandte Chemie.

[26]  A. Hirata,et al.  Atomic structure of amorphous shear bands in boron carbide , 2013, Nature Communications.

[27]  Etsuko Fujita,et al.  Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. , 2013, Chemical communications.

[28]  F. Illas,et al.  Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. , 2013, Physical chemistry chemical physics : PCCP.

[29]  D. E. Vlachos,et al.  Temperature uniformity analysis and development of open lightweight composite molds using carbon fibers as heating elements , 2013 .

[30]  M. Polański,et al.  A simple method of synthesis and surface purification of titanium carbide powder , 2013 .

[31]  K. Vanmeensel,et al.  Spark Plasma Sintering of Superhard B4C–ZrB2 Ceramics by Carbide Boronizing , 2013 .

[32]  C. Wolden,et al.  Synthesis of β-Mo(2)C thin films. , 2011, ACS applied materials & interfaces.

[33]  V. Pol,et al.  One‐Step Synthesis and Characterization of SiC, Mo2C, and WC Nanostructures , 2009 .

[34]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[35]  Manos Mavrikakis,et al.  A search engine for catalysts , 2006, Nature materials.

[36]  H. Harima Raman scattering characterization on SiC , 2006 .

[37]  S. Qadri,et al.  Formation of a Superconducting Mixture of β-Mo2C Nanoparticles and Carbon Nanotubes in an Amorphous Matrix of Molybdenum Compounds by the Pyrolysis of a Molybdenum Derivative of a Carboranylenesiloxane , 2005 .

[38]  M. Demetriou,et al.  Computation of metastable phases in tungsten-carbon system , 2002 .

[39]  Malcolm L. H. Green,et al.  Study of the Temperature-Programmed Reaction Synthesis of Early Transition Metal Carbide and Nitride Catalyst Materials from Oxide Precursors , 2000 .

[40]  B. Johansson,et al.  Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide , 1999 .

[41]  H. Jang,et al.  The Effects of Temperature on Particle Size in the Gas-Phase Production of TiO2 , 1995 .

[42]  M. Boudart,et al.  Molybdenum carbide catalysts. I. Synthesis of unsupported powders , 1987 .

[43]  John Abrahamson,et al.  Graphite sublimation temperatures, carbon arcs and crystallite erosion , 1974 .