A physically based gradient plasticity theory

Abstract The intent of this work is to derive a physically motivated mathematical form for the gradient plasticity that can be used to interpret the size effects observed experimentally. The step of translating from the dislocation-based mechanics to a continuum formulation is explored. This paper addresses a possible, yet simple, link between the Taylor’s model of dislocation hardening and the strain gradient plasticity. Evolution equations for the densities of statistically stored dislocations and geometrically necessary dislocations are used to establish this linkage. The dislocation processes of generation, motion, immobilization, recovery, and annihilation are considered in which the geometric obstacles contribute to the storage of statistical dislocations. As a result, a physically sound relation for the material length scale parameter is obtained as a function of the course of plastic deformation, grain size, and a set of macroscopic and microscopic physical parameters. Comparisons are made of this theory with experiments on micro-torsion, micro-bending, and micro-indentation size effects.

[1]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[2]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[3]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[4]  M. Gurtin On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients , 2003 .

[5]  Huajian Gao,et al.  The flow theory of mechanism-based strain gradient plasticity , 2003 .

[6]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[7]  P. Hirsch The Physics of Metals: Contents , 1976 .

[8]  Hussein M. Zbib,et al.  On the localization and postlocalization behavior of plastic deformation. II: On the evolution and thickness of shear bands , 1988 .

[9]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[10]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[11]  George Z. Voyiadjis,et al.  A direct finite element implementation of the gradient‐dependent theory , 2005 .

[12]  W. Brekelmans,et al.  Scale dependent crystal plasticity framework with dislocation density and grain boundary effects , 2004 .

[13]  Yuri Estrin,et al.  A unified phenomenological description of work hardening and creep based on one-parameter models , 1984 .

[14]  H. Zbib,et al.  Size effects and length scales in gradient plasticity and dislocation dynamics , 2003 .

[15]  Huajian Gao,et al.  Taylor-based nonlocal theory of plasticity: numerical studies of the micro-indentation experiments and crack tip fields , 2001 .

[16]  W. Nix,et al.  Modeling Plasticity at the Micrometer Scale , 1999, Naturwissenschaften.

[17]  A. Acharya,et al.  A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility , 2001 .

[18]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity—II. Analysis , 2000 .

[19]  Bob Svendsen,et al.  Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations , 2002 .

[20]  K. C. Valanis,et al.  A gradient theory of internal variables , 1996 .

[21]  John W. Hutchinson,et al.  The mechanics of size-dependent indentation , 1998 .

[22]  Kristian Krabbenhøft,et al.  Mathematical theory of plasticity for frictional materials , 2008 .

[23]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[24]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[25]  M. Ashby,et al.  Micro-hardness of annealed and work-hardened copper polycrystals , 1996 .

[26]  Jian Chen,et al.  Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests , 2001 .

[27]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[28]  U. F. Kocks A statistical theory of flow stress and work-hardening , 1966 .

[29]  E. Aifantis,et al.  Geometrically Necessary Dislocations and Strain Gradient Plasticity - A Dislocation Dynamics Point of View , 2003 .

[30]  D. Stone,et al.  Indentation size effect in polycrystalline F.C.C. metals , 2002 .

[31]  J. Hutchinson Plasticity at the micron scale , 2000 .

[32]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[33]  Elias C. Aifantis,et al.  On a proposal for a continuum with microstructure , 1982 .

[34]  Hussein M. Zbib,et al.  On the localization and postlocalization behavior of plastic deformation. I: On the initiation of shear bands , 1988 .

[35]  H. Zbib,et al.  A superdislocation model for the strengthening of metal matrix composites and the initiation and propagation of shear bands , 1994 .

[36]  Huajian Gao,et al.  Effect of intrinsic lattice resistance in strain gradient plasticity , 2001 .

[37]  Anthony N. Palazotto,et al.  Non-local coupling of viscoplasticity and anisotropic viscodamage for impact problems using the gradient theory , 2003 .

[38]  G. Voyiadjis,et al.  Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory , 2004 .

[39]  H. Zbib,et al.  Flow strength and size effect of an Al-Si-Mg composite model system under multiaxial loadings , 1995 .

[40]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[41]  Douglas J. Bammann,et al.  A model of crystal plasticity containing a natural length scale , 2001 .

[42]  N.,et al.  A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY , 2002 .

[43]  Y. Milman,et al.  Microindentations on W and Mo oriented single crystals: An STM study , 1993 .

[44]  Jerzy Pamin,et al.  Some novel developments in finite element procedures for gradient-dependent plasticity , 1996 .

[45]  John L. Bassani,et al.  Incompatibility and a simple gradient theory of plasticity , 2001 .

[46]  H. Zbib,et al.  Damage and size effect during superplastic deformation , 2002 .

[47]  M. M. Chaudhri,et al.  The effect of the indenter load on the nanohardness of ductile metals : an experimental study on polycrystalline work-hardened and annealed oxygen-free copper , 1999 .

[48]  Y. Bergström,et al.  The forming limit diagram of sheet metals and effects of strain path changes on formability: a dislocation treatment , 1982 .

[49]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[50]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[51]  Pranav Shrotriya,et al.  On the measurement of the plasticity length scale parameter in LIGA nickel foils , 2003 .

[52]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[53]  Y. Estrin,et al.  The analysis of shear banding with a dislocation based gradient plasticity model , 2000 .

[54]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[55]  Huajian Gao,et al.  A finite deformation theory of strain gradient plasticity , 2002 .

[56]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[57]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[58]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[59]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[60]  H. Hallen,et al.  An improved dislocation model for the stress-strain behaviour of polycrystalline α-Fe , 1982 .

[61]  Y. Estrin,et al.  Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect , 1990 .

[62]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[63]  J. Gracio The double effect of grain size on the work hardening behaviour of polycrystalline copper , 1994 .

[64]  Huajian Gao,et al.  Taylor-based nonlocal theory of plasticity , 2001 .

[65]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[66]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[67]  Anthony N. Palazotto,et al.  Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory , 2004 .

[68]  Huajian Gao,et al.  A conventional theory of mechanism-based strain gradient plasticity , 2004 .

[69]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[70]  J. Willis,et al.  The role of interfaces in enhancing the yield strength of composites and polycrystals , 2005 .

[71]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[72]  George Z. Voyiadjis,et al.  Multiscale Analysis of Multiple Damage Mechanisms Coupled with Inelastic Behavior of Composite Materials , 2001 .

[73]  A. Cemal Eringen,et al.  Theory of Micropolar Elasticity , 1999 .

[74]  Y. Huangb,et al.  Finite deformation analysis of mechanism-based strain gradient plasticity : torsion and crack tip field , 2002 .

[75]  William D. Nix,et al.  The Role of Indentation Depth on the Measured Hardness of Materials , 1993 .

[76]  Rashid K. Abu Al-Rub,et al.  A Finite Strain Plastic-damage Model for High Velocity Impact using Combined Viscosity and Gradient Localization Limiters: Part I - Theoretical Formulation , 2006 .

[77]  G. Voyiadjis,et al.  Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments , 2004 .

[78]  George Z. Voyiadjis,et al.  A Finite Strain Plastic-damage Model for High Velocity Impacts using Combined Viscosity and Gradient Localization Limiters: Part II - Numerical Aspects and Simulations , 2006 .

[79]  Norman A. Fleck,et al.  The prediction of a size effect in microindentation , 1998 .

[80]  E. Aifantis Strain gradient interpretation of size effects , 1999 .

[81]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[82]  E. Aifantis,et al.  Recent Developments in Gradient Plasticity—Part I: Formulation and Size Effects , 2002 .

[83]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[84]  Huajian Gao,et al.  Identification of elastic-plastic material parameters from pyramidal indentation of thin films , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[85]  H. Zbib,et al.  IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials : proceedings of the IUTAM Symposium held in Marrakech, Morocco, 20-25 October, 2002. Solid Mechanics and its Applications , 2004 .

[86]  Zdeněk P. Bažant,et al.  Size effect and asymptotic matching approximations in strain-gradient theories of micro-scale plasticity , 2002 .

[87]  Shaohua Chen,et al.  Interface crack problems with strain gradient effects , 2002 .

[88]  E. Aifantis,et al.  Recent Developments in Gradient Plasticity—Part II: Plastic Heterogeneity and Wavelets , 2002 .

[89]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[90]  D. Wilkinson,et al.  Plastic flow and fracture of a particulate metal matrix composite , 1996 .

[91]  Piotr Perzyna,et al.  The constitutive equations for rate sensitive plastic materials , 1963 .

[92]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[93]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[94]  H. Mughrabi On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity , 2001 .

[95]  G. Pharr,et al.  The correlation of the indentation size effect measured with indenters of various shapes , 2002 .

[96]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[97]  George Z. Voyiadjis,et al.  Gradient plasticity theory with a variable length scale parameter , 2005 .

[98]  T. Belytschko,et al.  Localization limiters in transient problems , 1988 .

[99]  David R. Clarke,et al.  The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites , 1996 .

[100]  H. Askes,et al.  Gradient viscoplastic modelling of material instabilities in metals , 1998, Metals and Materials.

[101]  M. Saif,et al.  Strain gradient effect in nanoscale thin films , 2003 .

[102]  J. Helsing,et al.  A Seventh-Order Accurate and Stable Algorithm for the Computation of Stress Inside Cracked Rectangular Domains , 2004 .

[103]  Vasily V. Bulatov,et al.  On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals , 2004 .