The Functional Expression of Antibody Fv Fragments in Ischhuchia coli: Improved Vectors and a Generally Applicable Purification Technique

[1]  R. Glockshuber,et al.  A comparison of strategies to stabilize immunoglobulin Fv-fragments. , 1990, Biochemistry.

[2]  D R Burton,et al.  Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. , 1989, Science.

[3]  M. Uhlén,et al.  Immobilization and affinity purification of recombinant proteins using histidine peptide fusions. , 1989, European journal of biochemistry.

[4]  J. Knowles,et al.  A conservative amino acid substitution, arginine for lysine, abolishes export of a hybrid protein in Escherichia coli. Implications for the mechanism of protein secretion. , 1989, The Journal of biological chemistry.

[5]  P. T. Jones,et al.  Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli , 1989, Nature.

[6]  G. Vonheijne,et al.  Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues , 1989, Nature.

[7]  H. Hsiung,et al.  Chelating peptide-immobilized metal ion affinity chromatography , 1989 .

[8]  R. Gentz,et al.  Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent , 1988, Bio/Technology.

[9]  K. D. Hardman,et al.  Single-chain antigen-binding proteins. , 1988, Science.

[10]  R. Bruccoleri,et al.  Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Tsuchiya,et al.  Control of Folding of Proteins Secreted by a High Expression Secretion Vector, pIN-III-ompA: 16-Fold Increase in Production of Active Subtilisin E in Escherichia Coli , 1988, Bio/Technology.

[12]  C. Pidgeon,et al.  Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. , 1988, The Journal of biological chemistry.

[13]  A. Plückthun,et al.  Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. , 1988, Science.

[14]  C. Pidgeon,et al.  Immobilized iminodiacetic acid metal peptide complexes. Identification of chelating peptide purification handles for recombinant proteins , 1987 .

[15]  Y. Satow,et al.  Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. , 1985, Journal of molecular biology.

[16]  Y Masui,et al.  Secretion cloning vectors in Escherichia coli. , 1984, The EMBO journal.

[17]  J. Vieira,et al.  The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. , 1982, Gene.

[18]  E. Beck,et al.  Nucleotide sequence and genome organisation of filamentous bacteriophages f1 and fd , 1981 .

[19]  M. Inouye,et al.  Messenger ribonucleic acid of the lipoprotein of the Escherichia coli outer membrane. II. The complete nucleotide sequence. , 1980, The Journal of biological chemistry.

[20]  N. Young,et al.  The binding of analogs of phosphorylcholine by the murine myeloma proteins McPC 603, MOPC 167 and S107. , 1977, Immunochemistry.

[21]  G. Cohen,et al.  The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Chesebro,et al.  Affinity labeling of a phosphorylcholine binding mouse myeloma protein. , 1972, Biochemistry.

[23]  N. Young,et al.  Specificity for phosphorylcholine of six murine myeloma proteins reactive with Pneumococcus C polysaccharide and beta-lipoprotein. , 1971, Biochemistry.

[24]  H M Sassenfeld,et al.  Engineering proteins for purification. , 1990, Trends in biotechnology.

[25]  R. Schoner,et al.  Enhanced translational efficiency with two-cistron expression system. , 1990, Methods in enzymology.

[26]  A. Plückthun,et al.  Expression of functional antibody Fv and Fab fragments in Escherichia coli. , 1989, Methods in enzymology.

[27]  M. Stark Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. , 1987, Gene.

[28]  J. Vieira,et al.  Production of single-stranded plasmid DNA. , 1987, Methods in enzymology.

[29]  F. Witney,et al.  Efficient site-directed in vitro mutagenesis , 1987 .

[30]  E. Hochuli,et al.  New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. , 1987, Journal of chromatography.

[31]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[32]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Sassenfeld,et al.  A Polypeptide Fusion Designed for the Purification of Recombinant Proteins , 1984, Bio/Technology.

[34]  L. Hood,et al.  The generation of diversity in phosphorylcholine-binding antibodies. , 1984, Advances in immunology.

[35]  M. Potter,et al.  Antigen-binding myeloma proteins in mice. , 1971, Annals of the New York Academy of Sciences.

[36]  B. Chesebro,et al.  Modification of Immunoglobulin Combining Sites , 1971 .