The metal‐free hydrogenase from methanogenic archaea: evidence for a bound cofactor

[1]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[2]  K. Rinehart,et al.  Tetrahydromethanopterin, a carbon carrier in methanogenesis. , 1984, The Journal of biological chemistry.

[3]  R. Thauer,et al.  N5 ,N10 ‐Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity , 1990 .

[4]  R. Thauer,et al.  Hydrogen-forming and coenzyme-F420-reducing methylene tetrahydromethanopterin dehydrogenase are genetically distinct enzymes in Methanobacterium thermoautotrophicum (Marburg). , 1991, European journal of biochemistry.

[5]  R. Thauer,et al.  Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. , 1992, European journal of biochemistry.

[6]  R. Thauer,et al.  H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. , 1992, European journal of biochemistry.

[7]  R. Thauer,et al.  On the Mechanism of Catalysis by a Metal‐Free Hydrogenase from Methanogenic Archaea: Enzymatic Transformation of H2 without a Metal and Its Analogy to the Chemistry of Alkanes in Superacidic Solution , 1995 .

[8]  R. Thauer,et al.  Reactions with Molecular Hydrogen in Microorganisms: Evidence for a Purely Organic Hydrogenation Catalyst. , 1996, Chemical reviews.

[9]  J. Cioslowski,et al.  Geometry‐Tunable Lewis Acidity of Amidinium Cations and Its Relevance to Redox Reactions of the Thauer Metal‐Free Hydrogenase: A Theoretical Study , 1997 .

[10]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[11]  L. Radom,et al.  Remarkable cleavage of molecular hydrogen without the use of metallic catalysts: a theoretical investigation , 1998 .

[12]  A. Berkessel,et al.  Hydrogenation without a Metal Catalyst: An ab Initio Study on the Mechanism of the Metal-Free Hydrogenase from Methanobacterium thermoautotrophicum , 1998 .

[13]  R. Thauer,et al.  Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2 , 1998, Archives of Microbiology.

[14]  C. Griesinger,et al.  Catalytic Mechanism of the Metal-Free Hydrogenase from Methanogenic Archaea: Reversed Stereospecificity of the Catalytic and Noncatalytic Reaction. , 1998, Angewandte Chemie.

[15]  J. Fontecilla-Camps,et al.  Nickel–Iron–Sulfur Active Sites: Hydrogenase and Co Dehydrogenase , 1999 .

[16]  J. Reeve,et al.  Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanot , 2000, International journal of systematic and evolutionary microbiology.