River flow forecasting using artificial neural networks

Abstract River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfall-runoff modelling. While conceptual or physically-based models are of importance in the understanding of hydrological processes, there are many practical situations where the main concern is with making accurate predictions at specific locations. In such situation it is preferred to implement a simple “black box” (data-driven, or machine learning) model to identify a direct mapping between the inputs and outputs without detailed consideration of the internal structure of the physical process. Artificial neural networks (ANNs) is probably the most successful machine learning technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach understanding as to the nature of the phenomena. In this study the applicability of ANNs for downstream flow forecasting in the Apure river basin (Venezuela) was investigated. Two types of ANN architectures, namely multi-layer perceptron network (MLP) and a radial basis function network (RBF) were implemented. The performances of these networks were compared with a conceptual rainfall-runoff model and they were found to be slightly better for this river flow-forecasting problem.