Space–time finite element computation of complex fluid–structure interactions

New special fluid-structure interaction (FSI) techniques, supplementing the ones developed earlier, are employed with the Stabilized Space-Time FSI (SSTFSI) technique. The new special techniques include improved ways of calculating the equivalent fabric porosity in Homogenized Modeling of Geometric Porosity (HMGP), improved ways of building a starting point in FSI computations, ways of accounting for fluid forces acting on structural components that are not expected to influence the flow, adaptive HMGP, and multiscale sequentially coupled FSI techniques. While FSI modeling of complex parachutes was the motivation behind developing some of these techniques, they are also applicable to other classes of complex FSI problems. We also present new ideas to increase the scope of our FSI and CFD techniques. .

[1]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[2]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[3]  Arif Masud,et al.  An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction , 2007 .

[4]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[5]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[6]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[7]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[8]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[9]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[10]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[11]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[12]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[13]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[14]  A. Sameh,et al.  Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows , 2009 .

[15]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[16]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[17]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[18]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[19]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[20]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[21]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[22]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[23]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[24]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[25]  Ekkehard Ramm,et al.  A strong coupling partitioned approach for fluid–structure interaction with free surfaces , 2007 .

[26]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[27]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[28]  Tayfun E. Tezduyar,et al.  Stabilized formulations for incompressible flows with thermal coupling , 2008 .

[29]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[30]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[31]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[32]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[33]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[34]  Yuri Bazilevs,et al.  Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation , 2008, Stroke.

[35]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[36]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[37]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[38]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[39]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[40]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[41]  Toshio Kobayashi,et al.  Influence of wall elasticity on image-based blood flow simulations , 2004 .

[42]  W. Wall,et al.  A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .

[43]  Toshiaki Hisada,et al.  Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method , 2007 .

[44]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[45]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[46]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[47]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[48]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[49]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[50]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[51]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[52]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[53]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[54]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[55]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[56]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[57]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[58]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[59]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[60]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[61]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[62]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[63]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[64]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .