Visualizing Computational Social Science

Parallel advances in communication and visualization technologies have enabled the study and visualization of human behavior at a scale and level of detail never before possible. Nowhere are these advances more evident than within the emerging field of computational social science. Using Adamic and Glance’s image of the political blogosphere as an example and social representations theory as a guiding framework, we explore how computational social science visualizations may aid and complicate public understanding of this new science. We conclude with a discussion of best practices for the production and reuse of computational social science images for public consumption.

[1]  Claudio Cioffi-Revilla,et al.  Computational social science , 2010 .

[2]  Deepak Kumar Subedi,et al.  Signal and Noise: Why So Many Predictions Fail – but Some Don't , 2013 .

[3]  Susan K. Walker Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives , 2011 .

[4]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[5]  Herbert A. Simon,et al.  Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987, Cogn. Sci..

[6]  Ben Shneiderman,et al.  Analyzing Social Media Networks with NodeXL: Insights from a Connected World , 2010 .

[7]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[8]  Caroline Howarth,et al.  A social representation is not a quiet thing: exploring the critical potential of social representations theory. , 2006, The British journal of social psychology.

[9]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[10]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[11]  Steven Pinker,et al.  A theory of graph comprehension. , 1990 .

[12]  Aaron D. Shaw,et al.  A Tale of Two Blogospheres , 2012 .

[13]  Christopher Rao,et al.  Graphs in Statistical Analysis , 2010 .

[14]  S. Moscovici Notes towards a description of Social Representations , 1988 .

[15]  A. Pentland,et al.  Life in the network: The coming age of computational social science: Science , 2009 .

[16]  Eytan Adar,et al.  GUESS: a language and interface for graph exploration , 2006, CHI.

[17]  M. Fiorina,et al.  Political Polarization in the American Public , 2008 .

[18]  S. Moscovici La psychanalyse, son image et son public , 2004 .

[19]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[20]  Alberto Cambrosio,et al.  Visual cultures of science : rethinking representational practices in knowledge building and science communication , 2005 .

[21]  应天煜 浅议社会表象理论(Social Representation Theory)在旅游学研究中的应用 , 2004 .

[22]  Mengxiao Zhu,et al.  Motivations for self-assembling into project teams , 2013, Soc. Networks.

[23]  David Dekker,et al.  Measures of Simmelian Tie Strength, Simmelian Brokerage, and, the Simmelianly Brokered , 2006, J. Soc. Struct..

[24]  Cameron Marlow,et al.  A 61-million-person experiment in social influence and political mobilization , 2012, Nature.

[25]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[26]  Daniel A. McFarland,et al.  The Art and Science of Dynamic Network Visualization , 2006, J. Soc. Struct..

[27]  I. N. A. C. I. J. H. Fowler Book Review: Connected: The surprising power of our social networks and how they shape our lives. , 2009 .

[28]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .