Piezomaterials for bone regeneration design—homogenization approach ☆

Abstract Relying on the piezoelectric properties of natural bone we propose a new biomaterial made of an inert perforated piezoelectric matrix filled with living osteoblast cells. We expect that this device will help the process of bone regeneration. In this paper we give some conceptual and numerical tools based on homogenization theory as a starting point in the design of such a “smart system”.

[1]  Dan L Bader,et al.  A theoretical analysis of damage evolution in skeletal muscle tissue with reference to pressure ulcer development. , 2003, Journal of biomechanical engineering.

[2]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[3]  Andrew A. Marino,et al.  Piezoelectric Effect and Growth Control in Bone , 1970, Nature.

[4]  V. Sikavitsas,et al.  Biomaterials and bone mechanotransduction. , 2001, Biomaterials.

[5]  Noboru Kikuchi,et al.  Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method , 1998 .

[6]  Eduard Rohan,et al.  Sensitivity strategies in modelling heterogeneous media undergoing finite deformation , 2003, Math. Comput. Simul..

[7]  K. Anselme,et al.  Osteoblast adhesion on biomaterials. , 2000, Biomaterials.

[8]  M Zidi,et al.  Theoretical and numerical study of a bone remodeling model: The effect of osteocyte cells distribution , 2004, Biomechanics and modeling in mechanobiology.

[9]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[10]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[11]  C. Andrew L. Bassett,et al.  Generation of Electric Potentials by Bone in Response to Mechanical Stress , 1962, Science.

[12]  Józef Joachim Telega,et al.  Flow of electrolyte through porous piezoelectric medium: macroscopic equations , 2000 .

[13]  Cees W J Oomens,et al.  Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. , 2002, Journal of biomechanical engineering.

[14]  Correspondence relations among equivalent classes of heterogeneous piezoelectric solids under anti-plane mechanical and in-plane electrical fields , 1995 .

[15]  Houari Mechkour,et al.  Homogénéisation et simulation numérique de structures piézoélectriques perforées et laminées , 2004 .

[16]  U. Hornung Homogenization and porous media , 1996 .

[17]  S. Cowin Bone mechanics handbook , 2001 .

[18]  U. Joos,et al.  Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. , 2001, Biochimica et biophysica acta.

[19]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[20]  P. Lehenkari,et al.  Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. , 2001, Ultramicroscopy.

[21]  Eduard Rohan,et al.  Modeling Large-deformation-induced Microflow in Soft Biological Tissues , 2006 .