Pan-European climate at convection-permitting scale: a model intercomparison study

[1]  Mohamed Zerroukat,et al.  The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations , 2011, Geoscientific Model Development.

[2]  C. Taylor,et al.  A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office Unified Model: CP4-Africa , 2018 .

[3]  D. N. Walters,et al.  The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations , 2017 .

[4]  D. Lüthi,et al.  Evaluation of the convection‐resolving climate modeling approach on continental scales , 2017 .

[5]  A. Gobiet,et al.  Impacts of uncertainties in European gridded precipitation observations on regional climate analysis , 2016, International journal of climatology : a journal of the Royal Meteorological Society.

[6]  Markus Gross,et al.  The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations , 2017 .

[7]  S. Gualdi,et al.  Mediterranean extreme precipitation: a multi-model assessment , 2018, Climate Dynamics.

[8]  R. Laprise,et al.  Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions , 2017, Climate Dynamics.

[9]  J. Dudhia,et al.  Continental-scale convection-permitting modeling of the current and future climate of North America , 2017, Climate Dynamics.

[10]  Judit Bartholy,et al.  Med-CORDEX initiative for Mediterranean climate studies , 2016 .

[11]  G. Martin,et al.  ASoP (v1.0): a set of methods for analyzing scales of precipitation in general circulation models , 2016 .

[12]  C. Barthlott,et al.  Mechanisms initiating heavy precipitation over Italy during HyMeX Special Observation Period 1: a numerical case study using two mesoscale models , 2016 .

[13]  D. Lüthi,et al.  Towards European-Scale Convection-Resolving Climate Simulations , 2016 .

[14]  E. Kjellström,et al.  Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models , 2016 .

[15]  Peter Clark,et al.  Convection‐permitting models: a step‐change in rainfall forecasting , 2016 .

[16]  F. Giorgi,et al.  Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations , 2016, Climate Dynamics.

[17]  Luca Nisi,et al.  Spatial and temporal distribution of hailstorms in the Alpine region: a long‐term, high resolution, radar‐based analysis , 2016 .

[18]  F. Giorgi,et al.  Percentile indices for assessing changes in heavy precipitation events , 2016, Climatic Change.

[19]  Sophie Bastin,et al.  Influence of submonthly air–sea coupling on heavy precipitation events in the Western Mediterranean basin , 2016 .

[20]  M. Demuzere,et al.  How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? , 2016, Climate Dynamics.

[21]  V. Ducrocq,et al.  A seamless weather–climate multi‐model intercomparison on the representation of a high impact weather event in the western Mediterranean: HyMeX IOP12 , 2016 .

[22]  M. Déqué,et al.  Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations , 2016, Climate Dynamics.

[23]  Vladimir A. Semenov,et al.  Evidence for added value of convection‐permitting models for studying changes in extreme precipitation , 2015 .

[24]  Tobias Gysi,et al.  STELLA: a domain-specific tool for structured grid methods in weather and climate models , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[25]  R. Leung,et al.  A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges , 2015, Reviews of geophysics.

[26]  P. Mascart,et al.  Large‐eddy simulations of Hector the convector making the stratosphere wetter , 2015 .

[27]  A. Manzato,et al.  12 September 2012: A supercell outbreak in NE Italy? , 2015 .

[28]  Tobias Gysi,et al.  Porting the COSMO dynamical core to heterogeneous platforms using STELLA Library , 2015, PARCO.

[29]  A. Bott,et al.  On the time‐splitting errors of one‐dimensional advection schemes in numerical weather prediction models; a comparative study , 2014 .

[30]  Céline Lutoff,et al.  HYMEX , a 10-year Multidisciplinary Program on the mediterranean water cycle. , 2014 .

[31]  H. Fowler,et al.  The value of high-resolution Met Office regional climate models in the simulation of multi-hourly precipitation extremes , 2014 .

[32]  C. Schär,et al.  Evaluation of the convection‐resolving regional climate modeling approach in decade‐long simulations , 2014 .

[33]  R. Vautard,et al.  Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble , 2014 .

[34]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[35]  Adam A. Scaife,et al.  Skillful long‐range prediction of European and North American winters , 2014 .

[36]  C. Schwartz Reproducing the September 2013 Record-Breaking Rainfall over the Colorado Front Range with High-Resolution WRF Forecasts , 2014 .

[37]  Tobias Gysi,et al.  Towards a performance portable, architecture agnostic implementation strategy for weather and climate models , 2014, Supercomput. Front. Innov..

[38]  C. Frei,et al.  The climate of daily precipitation in the Alps: development and analysis of a high‐resolution grid dataset from pan‐Alpine rain‐gauge data , 2014 .

[39]  Oliver Fuhrer,et al.  Using Compiler Directives to Port Large Scientific Applications to GPUs: An Example from Atmospheric Science , 2014, Parallel Process. Lett..

[40]  A. Lock,et al.  Seamless Stratocumulus Simulation across the Turbulent Gray Zone , 2014 .

[41]  P. Berg,et al.  Benefit of convection permitting climate model simulations in the representation of convective precipitation , 2014, Climate Dynamics.

[42]  R. Vautard,et al.  EURO-CORDEX: new high-resolution climate change projections for European impact research , 2014, Regional Environmental Change.

[43]  E. Anagnostou,et al.  Assessment of High-Resolution Satellite-Based Rainfall Estimates over the Mediterranean during Heavy Precipitation Events , 2013 .

[44]  A. Gratzki,et al.  A Central European precipitation climatology - Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS) , 2013 .

[45]  C. Schär,et al.  Long-Term Simulations of Thermally Driven Flows and Orographic Convection at Convection-Parameterizing and Cloud-Resolving Resolutions , 2013 .

[46]  G. Georgievski,et al.  Added value of convection permitting seasonal simulations , 2013, Climate Dynamics.

[47]  R. Hogan,et al.  Mixing‐length controls on high‐resolution simulations of convective storms , 2013 .

[48]  H. Madsen,et al.  Assessing future climatic changes of rainfall extremes at small spatio-temporal scales , 2013, Climatic Change.

[49]  Daniela JacobJuliane,et al.  EURO-CORDEX: new high-resolution climate change projections for European impact research , 2013 .

[50]  Hayley J. Fowler,et al.  Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? , 2013, Climate Dynamics.

[51]  V. Ducrocq,et al.  Idealized numerical simulations of quasi‐stationary convective systems over the Northwestern Mediterranean complex terrain , 2012 .

[52]  M. Borga,et al.  Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework , 2012 .

[53]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[54]  N. Roberts,et al.  Realism of Rainfall in a Very High-Resolution Regional Climate Model , 2012 .

[55]  Kuolin Hsu,et al.  Intercomparison of High-Resolution Precipitation Products over Northwest Europe , 2012 .

[56]  S. Herrera,et al.  Development and analysis of a 50‐year high‐resolution daily gridded precipitation dataset over Spain (Spain02) , 2012 .

[57]  G. Bryan,et al.  Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics , 2012 .

[58]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[59]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[60]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[61]  C. J. Morcrette,et al.  Geoscientific Model Development The Met Office Unified Model Global Atmosphere 3 . 0 / 3 . 1 and JULES Global Land 3 . 0 / 3 . 1 configurations , 2011 .

[62]  Jesper Heile Christensen,et al.  Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. , 2010 .

[63]  Geert Lenderink,et al.  Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations , 2010 .

[64]  M. Hanel,et al.  On the value of hourly precipitation extremes in regional climate model simulations , 2010 .

[65]  Adrian M. Altenhoff,et al.  A gridded hourly precipitation dataset for Switzerland using rain‐gauge analysis and radar‐based disaggregation , 2010 .

[66]  Felix Ament,et al.  Assessing the Benefits of Convection-Permitting Models by Neighborhood Verification: Examples from MAP D-PHASE , 2010 .

[67]  M. New,et al.  The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data , 2010 .

[68]  J. Christensen,et al.  Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble , 2009 .

[69]  S. Goodman,et al.  Forecasting Lightning Threat Using Cloud-Resolving Model Simulations , 2009 .

[70]  Martin Hagen,et al.  A gridded dataset of hourly precipitation in Germany: Its construction, climatology and application , 2008 .

[71]  P. Jones,et al.  A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006 , 2008 .

[72]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description , 2008 .

[73]  Nigel Roberts,et al.  Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom , 2008 .

[74]  D. Lüthi,et al.  Aspects of the diurnal cycle in a regional climate model , 2008 .

[75]  C. Schär,et al.  Towards climate simulations at cloud-resolving scales , 2008 .

[76]  H. Österle,et al.  Quality of a climate reconstruction for the CADSES regions , 2008 .

[77]  A. Hense,et al.  The Regional Climate Model COSMO-CLM (CCLM) , 2008 .

[78]  G. Lenderink,et al.  Increase in hourly precipitation extremes beyond expectations from temperature changes , 2008 .

[79]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[80]  Véronique Ducrocq,et al.  A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors , 2008 .

[81]  Florence Habets,et al.  Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France , 2008 .

[82]  Cindy Lebeaupin,et al.  A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients , 2008 .

[83]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[84]  G. Zängl,et al.  Quantitative precipitation forecasting in the Alps: The advances achieved by the Mesoscale Alpine Programme , 2007 .

[85]  Véronique Ducrocq,et al.  The 8 and 9 September 2002 flash flood event in France: a model intercomparison , 2005 .

[86]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[87]  H. Andrieu,et al.  The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory , 2005 .

[88]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[89]  J. Wyngaard Toward Numerical Modeling in the “Terra Incognita” , 2004 .

[90]  J. Done,et al.  The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model , 2004 .

[91]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[92]  R. Kaltenböck The outbreak of severe storms along convergence lines northeast of the Alps: Case study of the 3 August 2001 mesoscale convective system with a pronounced bow echo , 2004 .

[93]  Jesper Heile Christensen,et al.  Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps , 2003 .

[94]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[95]  Louis J. Wicker,et al.  Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .

[96]  C. Morel,et al.  A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems , 2002 .

[97]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[98]  Martin Hagen,et al.  Motion characteristics of thunderstorms in southern Germany , 1999 .

[99]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[100]  C. Schär,et al.  A PRECIPITATION CLIMATOLOGY OF THE ALPS FROM HIGH-RESOLUTION RAIN-GAUGE OBSERVATIONS , 1998 .

[101]  B. Golding Nimrod: a system for generating automated very short range forecasts , 1998 .

[102]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[103]  B. Sevruk,et al.  Classification system of precipitation gauge site exposure: Evaluation and application , 1994 .

[104]  B. Ritter,et al.  A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations , 1992 .

[105]  Feike J. Leij,et al.  The RETC code for quantifying the hydraulic functions of unsaturated soils , 1992 .

[106]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[107]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[108]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[109]  A. Bott A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes , 1989 .

[110]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[111]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[112]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[113]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[114]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[115]  N. Phillips,et al.  NUMERICAL INTEGRATION OF THE QUASI-GEOSTROPHIC EQUATIONS FOR BAROTROPIC AND SIMPLE BAROCLINIC FLOWS , 1953 .