Characterizing single suspended cells by optorheology.

[1]  R. Knops,et al.  Three-Dimensional Problems of the Theory of Elasticity , 1967, The Mathematical Gazette.

[2]  A. I. Lur’e Three - dimensional problems of the theory of elasticity , 1968 .

[3]  Warren P. Mason,et al.  Introduction to polymer viscoelasticity , 1972 .

[4]  J. Bard,et al.  The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro , 1975, The Journal of cell biology.

[5]  E. Hay Interaction of embryonic cell surface and cytoskeleton with extracellular matrix , 1982 .

[6]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[7]  E. Elson,et al.  Cellular mechanics as an indicator of cytoskeletal structure and function. , 1988, Annual review of biophysics and biophysical chemistry.

[8]  P. Janmey,et al.  Mechanical properties of cytoskeletal polymers. , 1991, Current opinion in cell biology.

[9]  S. Zimmer,et al.  Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. , 1991, Biorheology.

[10]  W. H. Goldmann,et al.  Analysis of filamin and α‐actinin binding to actin by the stopped flow method , 1993 .

[11]  D H Wachsstock,et al.  Cross-linker dynamics determine the mechanical properties of actin gels. , 1994, Biophysical journal.

[12]  E. Evans,et al.  Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. , 1994, Science.

[13]  J. Tomasek,et al.  Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. , 1995, Experimental cell research.

[14]  K. Jacobson,et al.  Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. , 1998, Biophysical journal.

[15]  H. Joshi Microtubule dynamics in living cells. , 1998, Current opinion in cell biology.

[16]  T D Pollard,et al.  The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Z. Stachura,et al.  Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy , 1999, European Biophysics Journal.

[18]  C. Rotsch,et al.  Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. W. Park,et al.  Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series , 1999 .

[20]  Robert E. Buxbaum,et al.  Direct Observations of the Mechanical Behaviors of the Cytoskeleton in Living Fibroblasts , 1999, The Journal of cell biology.

[21]  C. Stournaras,et al.  Regulation of actin organisation by TGF-beta in H-ras-transformed fibroblasts. , 1999, Journal of cell science.

[22]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[23]  F. MacKintosh,et al.  Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. , 2000, Physical review letters.

[24]  J. Käs,et al.  Optical deformability of soft biological dielectrics. , 2000, Physical review letters.

[25]  C Rotsch,et al.  Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. , 2000, Biophysical journal.

[26]  T D Pollard,et al.  Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. , 2000, Annual review of biophysics and biomolecular structure.

[27]  D. Navajas,et al.  Scaling the microrheology of living cells. , 2001, Physical review letters.

[28]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[29]  Jochen Guck,et al.  Stretching biological cells with light , 2002 .

[30]  D. Smith,et al.  Active fluidization of polymer networks through molecular motors , 2002, Nature.

[31]  Daniel Isabey,et al.  Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers. , 2002, Journal of biomechanical engineering.

[32]  Subra Suresh,et al.  The biomechanics toolbox: experimental approaches for living cells and biomolecules , 2003 .

[33]  D A Weitz,et al.  Microrheology of entangled F-actin solutions. , 2003, Physical review letters.

[34]  J. Fredberg,et al.  Linearity and time-scale invariance of the creep function in living cells , 2004, Journal of The Royal Society Interface.

[35]  Stefan Schinkinger,et al.  Deformability‐based flow cytometry , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[36]  R. Mahaffy,et al.  Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. , 2004, Biophysical journal.

[37]  A. Richert,et al.  The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts , 2005, European Biophysics Journal.

[38]  Stefan Schinkinger,et al.  Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.

[39]  Stefan Schinkinger,et al.  Optical rheology of biological cells. , 2005, Physical review letters.

[40]  C. Shih,et al.  Cell motility and local viscoelasticity of fibroblasts. , 2005, Biophysical journal.