Latency and interval therapy affect the evolution in metastatic colorectal cancer

[1]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[2]  D. Shibata,et al.  Spatial mutation patterns as markers of early colorectal tumor cell mobility , 2018, Proceedings of the National Academy of Sciences.

[3]  N. Waddell,et al.  Copy number profiles of paired primary and metastatic colorectal cancers , 2017, Oncotarget.

[4]  E. Sokol,et al.  Cancer cells exhibit clonal diversity in phenotypic plasticity , 2017, Open Biology.

[5]  Carl Virtanen,et al.  Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial , 2016, Genome Medicine.

[6]  Mark Lawler,et al.  Challenging the Cancer Molecular Stratification Dogma: Intratumoral Heterogeneity Undermines Consensus Molecular Subtypes and Potential Diagnostic Value in Colorectal Cancer , 2016, Clinical Cancer Research.

[7]  Keith L. Ligon,et al.  Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma , 2016, Nature Communications.

[8]  B. Taylor,et al.  deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution , 2016, Genome Biology.

[9]  M. Tsao,et al.  Clinical impact of mutation fraction in epidermal growth factor receptor mutation positive NSCLC patients , 2016, British Journal of Cancer.

[10]  Wei-Chen Chen,et al.  EM Algorithm for Model-Based Clustering of Finite MixtureGaussian Distribution , 2015 .

[11]  Vivian S. W. Li,et al.  Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. , 2015, American journal of physiology. Cell physiology.

[12]  Maurits J. J. Dijkstra,et al.  High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer , 2015, PloS one.

[13]  Jeffrey S. Morris,et al.  The Consensus Molecular Subtypes of Colorectal Cancer , 2015, Nature Medicine.

[14]  C. Bokemeyer,et al.  FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer. , 2015, European journal of cancer.

[15]  Bert Vogelstein,et al.  PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. , 2015, The New England journal of medicine.

[16]  Sabine Tejpar,et al.  Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Julian Gehring,et al.  SomaticSignatures: inferring mutational signatures from single-nucleotide variants , 2014, bioRxiv.

[18]  A. Siepel,et al.  Probabilities of Fitness Consequences for Point Mutations Across the Human Genome , 2014, Nature Genetics.

[19]  M. Olivier IARC TP53 Database , 2015 .

[20]  T. Nakajima,et al.  Mutant allele frequency predicts the efficacy of EGFR-TKIs in lung adenocarcinoma harboring the L858R mutation. , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[21]  Serena Nik-Zainal,et al.  Mechanisms underlying mutational signatures in human cancers , 2014, Nature Reviews Genetics.

[22]  Chang Yu,et al.  Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer , 2014, Gut.

[23]  Michael C. Schatz,et al.  Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly , 2014, bioRxiv.

[24]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[25]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[26]  P. A. Futreal,et al.  Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing , 2014, Nature Genetics.

[27]  A. Forbes,et al.  FOXE1 and SYNE1 Genes Hypermethylation Panel as Promising Biomarker in Colitis-associated Colorectal Neoplasia , 2014, Inflammatory bowel diseases.

[28]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[29]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[30]  C. Klein Selection and adaptation during metastatic cancer progression , 2013, Nature.

[31]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[32]  J. Tabernero,et al.  Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. , 2013, The New England journal of medicine.

[33]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[34]  F. Nicolantonio,et al.  Liquid biopsy: monitoring cancer-genetics in the blood , 2013, Nature Reviews Clinical Oncology.

[35]  P. Quesenberry,et al.  Heterogeneity of colorectal cancer (CRC) in reference to KRAS proto-oncogene utilizing WAVE technology. , 2013, Experimental and molecular pathology.

[36]  Aaron R. Quinlan,et al.  GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations , 2013, PLoS Comput. Biol..

[37]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[38]  S. Paik,et al.  Colon Cancer Mutation: Prognosis/Prediction–Response , 2013, Clinical Cancer Research.

[39]  Andrew M. K. Brown,et al.  Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer , 2013, Science.

[40]  J. Pagès,et al.  Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer. , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[41]  I. Braña,et al.  Clinical development of phosphatidylinositol 3-kinase inhibitors for cancer treatment , 2012, BMC Medicine.

[42]  K. Kumamoto,et al.  UHRF1 expression is upregulated and associated with cellular proliferation in colorectal cancer. , 2012, Oncology reports.

[43]  A. Viale,et al.  Comparative genomic analysis of primary versus metastatic colorectal carcinomas. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  Enzo Medico,et al.  Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer , 2012, Nature.

[45]  Jorge S Reis-Filho,et al.  Genetic heterogeneity and cancer drug resistance. , 2012, The Lancet. Oncology.

[46]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[47]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[48]  P. V. van Diest,et al.  Primary Colorectal Cancers and Their Subsequent Hepatic Metastases Are Genetically Different: Implications for Selection of Patients for Targeted Treatment , 2011, Clinical Cancer Research.

[49]  P. Gibbs,et al.  Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer , 2011, Cancer.

[50]  M. Stratton Exploring the Genomes of Cancer Cells: Progress and Promise , 2011, Science.

[51]  S. Digumarthy,et al.  Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors , 2011, Science Translational Medicine.

[52]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[53]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[54]  L. Mazzucchelli,et al.  Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  Dongsheng Tu,et al.  K-ras mutations and benefit from cetuximab in advanced colorectal cancer. , 2008, The New England journal of medicine.

[56]  S. Veronese,et al.  Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[57]  Daniel J. Freeman,et al.  Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[58]  E. Van Cutsem,et al.  KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[59]  Dongsheng Tu,et al.  Cetuximab for the treatment of colorectal cancer. , 2007, The New England journal of medicine.

[60]  J. Ptak,et al.  High Frequency of Mutations of the PIK3CA Gene in Human Cancers , 2004, Science.

[61]  W F Bodmer,et al.  The ABC of APC. , 2001, Human molecular genetics.