Methods for Job Recommandation on Social Networks

We are entering a new era of data mining in which the main challenge is the storing andprocessing of massive data : this is leading to a new promising research and industry field called Big data. Data are currently a new raw material coveted by businesses of all sizes and all sectors. They allow organizations to analyze, understand, model and explain phenomen a such as the behavior of their users or customers. Some companies like Google, Facebook,LinkedIn and Twitter are using user data to determine their preferences in order to make targeted advertisements to increase their revenues.This thesis has been carried out in collaboration between the laboratory L2TI andWork4, a French-American startup that offers Facebook recruitment solutions. Its main objective was the development of systems recommending relevant jobs to social network users ; the developed systems have been used to advertise job positions on social networks. After studying the literature about recommender systems, information retrieval, data mining and machine learning, we modeled social users using data they posted on their profiles, those of their social relationships together with the bag-of-words and ontology-based models. We measure the interests of users for jobs using both heuristics and models based on machine learning. The development of efficient job recommender systems involved to tackle the problem of categorization and summarization of user profiles and job descriptions. After developing job recommender systems on social networks, we developed a set of systems called Work4 Oracle that predict the audience (number of clicks) of job advertisements posted on Facebook, LinkedIn or Twitter. The analysis of the results of Work4 Oracle allows us to find and quantify factors impacting the popularity of job ads posted on social networks, these results have been compared to those of the literature of Human Resource Management. All our proposed systems deal with privacy preservation by only using the data that social network users explicitly allowed to access to ; they also deal with noisy and missing data of social network users and have been validated on real-world data provided by Work4.

[1]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[2]  Sam Shah,et al.  The big data ecosystem at LinkedIn , 2013, SIGMOD '13.

[3]  Gerhard Friedrich,et al.  An Integrated Environment for the Development of Knowledge-Based Recommender Applications , 2006, Int. J. Electron. Commer..

[4]  Karin M. Verspoor,et al.  BioLemmatizer: a lemmatization tool for morphological processing of biomedical text , 2012, J. Biomed. Semant..

[5]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[6]  Anjali Ganesh Jivani,et al.  A Comparative Study of Stemming Algorithms , 2011 .

[7]  Bart Selman,et al.  Referral Web: combining social networks and collaborative filtering , 1997, CACM.

[8]  Daniel B. Turban,et al.  Applicant Attraction to Firms: Influences of Organization Reputation, Job and Organizational Attributes, and Recruiter Behaviors. , 1998 .

[9]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[10]  B. Lemaire Limites de la lemmatisation pour l'extraction de significations , 2008 .

[11]  J. R. Quinlan Induction of decision trees , 2004, Machine Learning.

[12]  Pascal Vincent,et al.  The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training , 2009, AISTATS.

[13]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[14]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[15]  Andreas Hotho,et al.  A Brief Survey of Text Mining , 2005, LDV Forum.

[16]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[17]  Ian Soboroff. Charles Nicholas Combining Content and Collaboration in Text Filtering , 1999 .

[18]  LausenGeorg,et al.  Propagation Models for Trust and Distrust in Social Networks , 2005 .

[19]  Huan Liu,et al.  Social recommendation: a review , 2013, Social Network Analysis and Mining.

[20]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[21]  L. J. Wei,et al.  The Robust Inference for the Cox Proportional Hazards Model , 1989 .

[22]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[23]  Julie Beth Lovins,et al.  Development of a stemming algorithm , 1968, Mech. Transl. Comput. Linguistics.

[24]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[25]  Matthew Richardson,et al.  Mining knowledge-sharing sites for viral marketing , 2002, KDD.

[26]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[27]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[28]  James Martens,et al.  Deep learning via Hessian-free optimization , 2010, ICML.

[29]  Luciano Rossoni,et al.  Models and methods in social network analysis , 2006 .

[30]  F. Mtenzi,et al.  Machine Learning Approach to Identifying the Dataset Threshold for the Performance Estimators in Supervised Learning , 2010 .

[31]  Douglas Eck,et al.  Learning Features from Music Audio with Deep Belief Networks , 2010, ISMIR.

[32]  Mamadou Diaby,et al.  Exploration of methodologies to improve job recommender systems on social networks , 2014, Social Network Analysis and Mining.

[33]  Brendon Towle,et al.  Knowledge Based Recommender Systems Using Explicit User Models , 2000 .

[34]  Sanjeev R. Kulkarni,et al.  Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models , 2011, 2011 IEEE 17th International Conference on Parallel and Distributed Systems.

[35]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[36]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[37]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[38]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[39]  Luis M. de Campos,et al.  Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks , 2010, Int. J. Approx. Reason..

[40]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[41]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[42]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[43]  Brian Kingsbury,et al.  New types of deep neural network learning for speech recognition and related applications: an overview , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[44]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[45]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[46]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[47]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[48]  Luis M. de Campos,et al.  A collaborative recommender system based on probabilistic inference from fuzzy observations , 2008, Fuzzy Sets Syst..

[49]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[50]  Ronen Feldman,et al.  Book Reviews: The Text Mining Handbook: Advanced Approaches to Analyzing Unstructured Data by Ronen Feldman and James Sanger , 2008, CL.

[51]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[52]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[53]  Izak Benbasat,et al.  E-Commerce Product Recommendation Agents: Use, Characteristics, and Impact , 2007, MIS Q..

[54]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[55]  J. Ziegert,et al.  Why Are Individuals Attracted to Organizations? , 2005 .

[56]  Nick Littlestone,et al.  Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm , 2004, Machine Learning.

[57]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[58]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[59]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[60]  Mamadou Diaby,et al.  A Social Formalism and Survey for Recommender Systems , 2015, SKDD.

[61]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[62]  Andreas Stafylopatis,et al.  A hybrid movie recommender system based on neural networks , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[63]  Kalervo Järvelin,et al.  To stem or lemmatize a highly inflectional language in a probabilistic IR environment? , 2005, J. Documentation.

[64]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[65]  Azadeh Iranmehr,et al.  Trust Management for Semantic Web , 2009, 2009 Second International Conference on Computer and Electrical Engineering.

[66]  Uday V. Kulkarni,et al.  Hybrid personalized recommender system using centering-bunching based clustering algorithm , 2012, Expert Syst. Appl..

[67]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .

[68]  Nizar Habash,et al.  MADA + TOKAN : A Toolkit for Arabic Tokenization , Diacritization , Morphological Disambiguation , POS Tagging , Stemming and Lemmatization , 2009 .

[69]  Karl Aberer,et al.  A Probabilistic Approach to Predict Peers? Performance in P2P Networks , 2004, CIA.

[70]  Pascal Matsakis,et al.  Evaluation of stop word lists in text retrieval using Latent Semantic Indexing , 2011, 2011 Sixth International Conference on Digital Information Management.

[71]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[72]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[73]  Ramanathan V. Guha,et al.  Propagation of trust and distrust , 2004, WWW '04.

[74]  Forrest W. Young,et al.  Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features , 1976 .

[75]  Vincent Claveau,et al.  Vectorisation, Okapi et calcul de similarité pour le TAL : pour oublier enfin le TF-IDF (Vectorization, Okapi and Computing Similarity for NLP : Say Goodbye to TF-IDF) [in French] , 2012, JEP/TALN/RECITAL.

[76]  David Carmel,et al.  Social recommender systems , 2011, Recommender Systems Handbook.

[77]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[78]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[79]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[80]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[81]  A. Dreher Modeling Survival Data Extending The Cox Model , 2016 .

[82]  Ramzi Yakob Grown Up Digital: How the Net Generation is Changing Your World , 2009 .

[83]  Kristina Chodorow,et al.  MongoDB: The Definitive Guide , 2010 .

[84]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[85]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[86]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[87]  Martin Porter,et al.  Snowball: A language for stemming algorithms , 2001 .

[88]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[89]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[90]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[91]  Shaul Oreg,et al.  The Effects Of Recruitment Message Specificity On Applicant Attraction To Organizations , 2005 .

[92]  Paolo Avesani,et al.  Trust-Aware Collaborative Filtering for Recommender Systems , 2004, CoopIS/DOA/ODBASE.

[93]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[94]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[95]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[96]  Baron Schwartz,et al.  High Performance MySQL: Optimization, Backups, and Replication , 2008 .

[97]  Piek Vossen,et al.  EuroWordNet: a multilingual database for information retrieval , 1997 .

[98]  Michael R. Lyu,et al.  Learning to recommend with social trust ensemble , 2009, SIGIR.

[99]  John L. Nazareth,et al.  Conjugate-Gradient Methods , 2009, Encyclopedia of Optimization.

[100]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[101]  Shivakant Mishra,et al.  Enhancing group recommendation by incorporating social relationship interactions , 2010, GROUP.

[102]  Julie Séguéla,et al.  Fouille de données textuelles et systèmes de recommandation appliqués aux offres d'emploi diffusées sur le web. (Text mining and recommender systems applied to job postings) , 2012 .

[103]  Allen Y. Yang,et al.  Fast ℓ1-minimization algorithms and an application in robust face recognition: A review , 2010, 2010 IEEE International Conference on Image Processing.

[104]  Yoshua Bengio,et al.  Deep Learning of Representations: Looking Forward , 2013, SLSP.

[105]  Emes Dynamiques Ecole Nationale Superieure des Mines de Paris , 1993 .

[106]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[107]  Mamadou Diaby,et al.  Field selection for job categorization and recommendation to social network users , 2014, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014).

[108]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[109]  Paul E. Levy,et al.  The Quest for the Qualified Job Surfer: It's Time the Public Sector Catches the Wave , 2000 .

[110]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[111]  Levent Ertoz,et al.  A New Shared Nearest Neighbor Clustering Algorithm and its Applications , 2002 .

[112]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[113]  Bethany S. Dohleman Exploratory social network analysis with Pajek , 2006 .

[114]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[115]  Joung Woo Ryu,et al.  Collaborative Filtering Based on Neural Networks Using Similarity , 2005, ISNN.

[116]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[117]  Mamadou Diaby,et al.  Quantifying the Hidden Factors Impacting the Audience of Advertisements Posted on Facebook , 2015, ICDM.

[118]  A. Rafaeli,et al.  Recruiting through advertising or employee referrals: Costs, yields, and the effects of geographic focus , 2005 .

[119]  D. Wilkinson,et al.  Social Network Collaborative Filtering , 2008 .

[120]  Georg Lausen,et al.  Propagation Models for Trust and Distrust in Social Networks , 2005, Inf. Syst. Frontiers.

[121]  James Bennett,et al.  The Netflix Prize , 2007 .

[122]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[123]  Georg Groh,et al.  Recommendations in taste related domains: collaborative filtering vs. social filtering , 2007, GROUP.

[124]  Tina Eliassi-Rad,et al.  Measuring tie strength in implicit social networks , 2011, WebSci '12.

[125]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[126]  Jennifer Golbeck,et al.  Generating Predictive Movie Recommendations from Trust in Social Networks , 2006, iTrust.

[127]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[128]  Danah Boyd,et al.  Social Network Sites: Definition, History, and Scholarship , 2007, J. Comput. Mediat. Commun..

[129]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[130]  Konstantinos G. Margaritis,et al.  Using SVD and demographic data for the enhancement of generalized Collaborative Filtering , 2007, Inf. Sci..

[131]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[132]  Zhonghang Xia,et al.  Support vector machines for collaborative filtering , 2006, ACM-SE 44.

[133]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[134]  Mamadou Diaby,et al.  Toward the next generation of recruitment tools: An online social network-based job recommender system , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[135]  Pradeep Ravikumar,et al.  On NDCG Consistency of Listwise Ranking Methods , 2011, AISTATS.

[136]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[137]  Sujeevan Aseervatham,et al.  Apprentissage à base de Noyaux Sémantiques pour le Traitement de Données Textuelles. (Machine Learning with Semantic Kernels for Textual Data) , 2007 .

[138]  James E. King,et al.  The effect of company recruitment web site orientation on individuals perceptions of organizational attractiveness , 2003 .

[139]  Michael D. Mumford,et al.  UNDERSTANDING WORK USING THE OCCUPATIONAL INFORMATION NETWORK (O*NET): IMPLICATIONS FOR PRACTICE AND RESEARCH , 2001 .

[140]  Zhi-Dan Zhao,et al.  User-Based Collaborative-Filtering Recommendation Algorithms on Hadoop , 2010, 2010 Third International Conference on Knowledge Discovery and Data Mining.

[141]  Bruce Krulwich,et al.  LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data , 1997, AI Mag..

[142]  Clémence Magnien,et al.  Quantifying paedophile activity in a large P2P system , 2012, Inf. Process. Manag..

[143]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[144]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[145]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[146]  Eric Gossett,et al.  Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2015 .

[147]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[148]  Lindsay I. Smith,et al.  A tutorial on Principal Components Analysis , 2002 .

[149]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[150]  D. Edwards Data Mining: Concepts, Models, Methods, and Algorithms , 2003 .

[151]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[152]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[153]  Lutz Hamel,et al.  Knowledge Discovery with Support Vector Machines , 2009 .

[154]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[155]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[156]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[157]  Rashmi R. Sinha,et al.  Comparing Recommendations Made by Online Systems and Friends , 2001, DELOS.

[158]  Blaise Ngonmang,et al.  Monetization and Services on a Real Online Social Network Using Social Network Analysis , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[159]  王珊,et al.  Personalized Service System Based on Hybrid Filtering for Digital Library , 2007 .

[160]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[161]  J. Bobadilla,et al.  Recommender systems survey , 2013, Knowl. Based Syst..

[162]  Bernd Bischl,et al.  Perceptually Based Phoneme Recognition in Popular Music , 2010 .

[163]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[164]  A. Roli Artificial Neural Networks , 2012, Lecture Notes in Computer Science.

[165]  Anindya Ghose,et al.  Social Network Collaborative Filtering: Preliminary Results , 2007 .

[166]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[167]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[168]  H. Markov,et al.  An algorithm to , 1997 .

[169]  Wesley W. Chu,et al.  A Social Network-Based Recommender System (SNRS) , 2010, Data Mining for Social Network Data.

[170]  Jiawei Han Data mining techniques , 1996, SIGMOD '96.

[171]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.

[172]  Michael S. Bernstein,et al.  Quantifying the invisible audience in social networks , 2013, CHI.

[173]  P. N. Suganthan,et al.  An approach for classification of highly imbalanced data using weighting and undersampling , 2010, Amino Acids.

[174]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[175]  Christian Biemann,et al.  Ontology Learning from Text: A Survey of Methods , 2005, LDV Forum.

[176]  Chao Liu,et al.  Recommender systems with social regularization , 2011, WSDM '11.

[177]  Michael W. Berry,et al.  Survey of Text Mining , 2003, Springer New York.

[178]  K. Lange,et al.  Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.

[179]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[180]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[181]  Liang He,et al.  A Hybrid Recommender Approach Based on Widrow-Hoff Learning , 2008, 2008 Second International Conference on Future Generation Communication and Networking.

[182]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[183]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[184]  Jennifer Golbeck,et al.  Computing and Applying Trust in Web-based Social Networks , 2005 .

[185]  Mamadou Diaby,et al.  Taxonomy-based job recommender systems on Facebook and LinkedIn profiles , 2014, 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS).

[186]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[187]  Barry Smyth,et al.  Trust in recommender systems , 2005, IUI.

[188]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[189]  M. McPherson,et al.  BIRDS OF A FEATHER: Homophily , 2001 .

[190]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[191]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[192]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[193]  Paolo Avesani,et al.  A trust-enhanced recommender system application: Moleskiing , 2005, SAC '05.

[194]  Enrique Herrera-Viedma,et al.  A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office , 2012, Inf. Sci..

[195]  José Juan Pazos-Arias,et al.  Exploring synergies between content-based filtering and Spreading Activation techniques in knowledge-based recommender systems , 2011, Inf. Sci..

[196]  Robert Gray,et al.  A Proportional Hazards Model for the Subdistribution of a Competing Risk , 1999 .

[197]  Fabio Aiolli,et al.  Efficient top-n recommendation for very large scale binary rated datasets , 2013, RecSys.

[198]  Tristan Launay,et al.  Bayesian methods for electricity load forecasting , 2012 .

[199]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .

[200]  Yi Zhang,et al.  Is it time for a career switch? , 2013, WWW.

[201]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[202]  Jason Weston,et al.  Deep learning via semi-supervised embedding , 2008, ICML '08.

[203]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[204]  Marc J. Hadley,et al.  Web application description language (WADL) , 2006 .

[205]  Filip Lievens,et al.  The relation of instrumental and symbolic attributes to a company's attractiveness as an employer. , 2003 .

[206]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[207]  G. Hutcheson Ordinary Least-Squares Regression , 1999 .

[208]  Michael R. Lyu,et al.  Introduction to social recommendation , 2010, WWW '10.

[209]  Hal G. Gueutal,et al.  The brave new world of eHR : human resources management in the digital age , 2005 .

[210]  Kelly A. Piasentin,et al.  Applicant attraction to organizations and job choice: a meta-analytic review of the correlates of recruiting outcomes. , 2005, The Journal of applied psychology.

[211]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[212]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[213]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[214]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..