Exponentiated Chen distribution: Properties and estimation

ABSTRACT This article addresses various properties and estimation methods for the Exponentiated Chen distribution. Although, our main focus is on estimation from frequentist point of view, yet, some statistical and reliability characteristics for the model are derived. We briefly describe different estimation procedures, namely, the method of maximum likelihood estimation, percentile estimation, least square and weighted least-square estimation, maximum product of spacings estimation, Cramér-von-Mises estimation, Anderson–Darling, and right-tail Anderson–Darling estimation. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. Finally, the potentiality of the model is analyzed by means of three real datasets.

[1]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[2]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[3]  E. Kay,et al.  Methods for statistical analysis of reliability and life data , 1974 .

[4]  I. Olkin,et al.  A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families , 1997 .

[5]  Konstantinos Adamidis,et al.  A Family of Lifetime Distributions , 2012 .

[6]  Z. A. Lomnicki Methods for Statistical Analysis of Reliability and Life Data , 1976 .

[7]  John H. K. Kao Computer Methods for Estimating Weibull Parameters in Reliability Studies , 1958 .

[8]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[9]  Keewhan Choi,et al.  An Estimation Procedure for Mixtures of Distributions , 1968 .

[10]  Bo Ranneby,et al.  The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method , 2016 .

[11]  W. J. Padgett,et al.  A Bootstrap Control Chart for Weibull Percentiles , 2006, Qual. Reliab. Eng. Int..

[12]  Zhenmin Chen A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function , 2000 .

[13]  N. Singpurwalla,et al.  Methods for Statistical Analysis of Reliability and Life Data. , 1975 .

[14]  S. M. Hoseini,et al.  Comparison of estimation methods for the Weibull distribution , 2013 .

[15]  Alberto Luceño,et al.  Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators , 2006, Comput. Stat. Data Anal..

[16]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[17]  Arne Henningsen,et al.  maxLik: A package for maximum likelihood estimation in R , 2011, Comput. Stat..

[18]  Tao Xie,et al.  Reliability Engineering , 2017, IEEE Softw..

[19]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[20]  J. J. Swain,et al.  Least-squares estimation of distribution functions in johnson's translation system , 1988 .

[21]  Yogendra P. Chaubey,et al.  An Extension of Chen’s Family of Survival Distributions with Bathtub Shape or Increasing Hazard Rate Function , 2015 .

[22]  Thong Ngee Goh,et al.  A modified Weibull extension with bathtub-shaped failure rate function , 2002, Reliab. Eng. Syst. Saf..

[23]  Debasis Kundu,et al.  Two-Parameter Rayleigh Distribution: Different Methods of Estimation , 2014 .

[24]  John H. K. Kao A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes , 1959 .

[25]  Debasis Kundu,et al.  Generalized exponential distribution: different method of estimations , 2001 .

[26]  Francisco Cribari-Neto,et al.  A generalization of the exponential-Poisson distribution , 2008, 0809.1894.

[27]  Pedro L. Ramos,et al.  Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data , 2016, Comput. Math. Methods Medicine.