“TNOs are Cool”: A survey of the trans-Neptunian region - IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations

Aims. The goal of this work is to characterize the ensemble thermal properties of the Centaurs/trans-Neptunian population. Methods. Thermal flux measurements obtained with Herschel/PACS and Spitzer/MIPS provide size, albedo, and beaming factors for 85 objects (13 of which are presented here for the first time) by means of standard radiometric techniques. The measured beaming factors are influenced by the combination of surface roughness and thermal inertia effects. They are interpreted within a thermophysical model to constrain, in a statistical sense, the thermal inertia in the population and to study its dependence on several parameters. We use in particular a Monte-Carlo modeling approach to the data whereby synthetic datasets of beaming factors are created using random distributions of spin orientation and surface roughness. Results. Beaming factors eta range fromvalues \textless1 to similar to 2.5, but high eta values (\textgreater2) are lacking at low heliocentric distances (r(h) \textless 30 AU). Beaming factors lower than 1 occur frequently (39% of the objects), indicating that surface roughness effects are important. We determine a mean thermal inertia for Centaurs/TNO of Gamma = (2.5 +/- 0.5) J m(-2) s(-1/2) K-1, with evidence of a trend toward decreasing Gamma with increasing heliocentric (by a factor similar to 2.5 from 8-25 AU to 41-53 AU). These thermal inertias are 2-3 orders of magnitude lower than expected for compact ices, and generally lower than on Saturn's satellites or in the Pluto/Charon system. Most high-albedo objects are found to have unusually low thermal inertias. Our results suggest highly porous surfaces, in which the heat transfer is affected by radiative conductivity within pores and increases with depth in the subsurface.

[1]  D. Osip,et al.  PHYSICAL CHARACTERIZATION OF THE BINARY EDGEWORTH-KUIPER BELT OBJECT 2001 QT297 , 2003 .

[2]  On the detectability of lightcurves of Kuiper belt objects , 2004, astro-ph/0401300.

[3]  E. Schaller,et al.  The Mass of Dwarf Planet Eris , 2007, Science.

[4]  Wm. A. Wheaton,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging , 2007, 0704.2196.

[5]  S. Sheppard THE COLORS OF EXTREME OUTER SOLAR SYSTEM OBJECTS , 2010, 1001.3674.

[6]  G. Carraro,et al.  Light curves and colours of the faint Uranian irregular satellites Sycorax, Prospero, Stephano, Setebos, and Trinculo , 2007, 0704.2187.

[7]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[8]  J. R. Spencer,et al.  (42355) Typhon–Echidna: Scheduling observations for binary orbit determination , 2008 .

[9]  F. Poulet,et al.  Photometric study of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles , 2005 .

[10]  David Jewitt The Active Centaurs , 2006 .

[11]  J. Brimacombe,et al.  Size and albedo of Kuiper belt object 55636 from a stellar occultation , 2010, Nature.

[12]  Athena Coustenis,et al.  Pluto's Non-isothermal Surface , 2000 .

[13]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[14]  M. Barucci,et al.  Rotational properties of Centaurs and Trans-Neptunian Objects - Lightcurves and densities , 2008 .

[15]  Polarimetric and Photometric Phase Effects Observed on Transneptunian Object (29981) 1999 TD10 , 2006 .

[16]  Analysis of the Rotational Properties of Kuiper Belt Objects , 2006, astro-ph/0601257.

[17]  C. Colazo,et al.  Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation , 2012, Nature.

[18]  A. Doressoundiram,et al.  STRATIFICATION OF METHANE ICE ON ERIS' SURFACE , 2008 .

[19]  C. Ritz,et al.  Modeling of the thermal behavior and of the chemical differentiation of cometary nuclei , 1991 .

[20]  F. DeMeo,et al.  Colors and taxonomy of Centaurs and trans-Neptunian objects , 2009, 0912.2621.

[21]  M. Shara,et al.  THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS , 2012, 1203.5543.

[22]  T. B. Spahr,et al.  MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS , 2011, 1109.4096.

[23]  A. Coradini,et al.  New 3D thermal evolution model for icy bodies application to trans-Neptunian objects , 2011 .

[24]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[25]  J. Ortiz,et al.  Transneptunian objects and Centaurs from light curves , 2009, 0910.1472.

[26]  D. Mendis,et al.  Monochromatic brightness variations of comets , 1977 .

[27]  T. Grav,et al.  The phase curve survey of the irregular saturnian satellites : A possible method of physical classification , 2006 .

[28]  G. Rieke,et al.  The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36 , 2006, astro-ph/0602316.

[29]  Suga,et al.  Thermal conductivity of the Ih and XI phases of ice. , 1994, Physical review. B, Condensed matter.

[30]  David L. Rabinowitz,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2006 .

[31]  M. W. Buie,et al.  Five New and Three Improved Mutual Orbits of Transneptunian Binaries , 2011 .

[32]  D. Rabinowitz,et al.  Direct measurement of the size of 2003 UB313 , 2005, astro-ph/0604245.

[33]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[34]  H. N. Russell On the Albedo of the Planets and Their Satellites , 1916 .

[35]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[36]  B. Scott Gaudi,et al.  On the Rotation Period of (90377) Sedna , 2005 .

[37]  James D. Rall,et al.  The period of rotation, shape, density, and homogeneous surface color of the Centaur 5145 Pholus , 2005 .

[38]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[39]  P. Lacerda A CHANGE IN THE LIGHT CURVE OF KUIPER BELT CONTACT BINARY (139775) 2001 QG298 , 2011, 1107.3507.

[40]  Julie C. Castillo-Rogez,et al.  Geophysical evolution of Saturn’s satellite Phoebe, a large planetesimal in the outer Solar System , 2012 .

[41]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[42]  J. Ortiz,et al.  A study of short term rotational variability in TNOs and Centaurs from Sierra Nevada Observatory , 2003 .

[43]  Alain Doressoundiram,et al.  Photometric and spectroscopic observations of Sycorax, satellite of Uranus , 2001 .

[44]  A. Doressoundiram,et al.  "TNOs are cool": A survey of the trans-Neptunian region II. The thermal lightcurve of (136108) Haumea , 2010 .

[45]  J. Greenberg,et al.  Extremely low thermal conductivity of amorphous ice - Relevance to comet evolution , 1992 .

[46]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[47]  J. Holtzman,et al.  Comparing Phoebe’s 2005 opposition surge in four visible light filters , 2011 .

[48]  Dale P. Cruikshank,et al.  Thermal properties of Pluto’s and Charon’s surfaces from Spitzer observations , 2011 .

[49]  R. G. Ross,et al.  Thermal Conductivity of Solar System Ices, with Special Reference to Martian Polar Caps , 1998 .

[50]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[51]  Steward Observatory,et al.  “TNOs are Cool”: a survey of the trans-Neptunian region - VII. Size and surface characteristics of (90377) Sedna and 2010 EK139 , 2012, 1204.0899.

[52]  M. W. Buie,et al.  The correlated colors of transneptunian binaries , 2009 .

[53]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[54]  T. Farnham The Rotation Axis of the Centaur 5145 Pholus , 2001 .

[55]  Chadwick A. Trujillo,et al.  A Correlation between Inclination and Color in the Classical Kuiper Belt , 2002, astro-ph/0201040.

[56]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[57]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[58]  D. Paige,et al.  A thermal model for the seasonal nitrogen cycle on Triton , 1992 .

[59]  R. Clark,et al.  Infrared (0.83–5.1 μm) photometry of Phoebe from the Cassini Visual Infrared Mapping Spectrometer , 2008 .

[60]  I. A. Steele,et al.  A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation , 2011, Nature.

[61]  J. Beeman,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. III. An Asteroid‐based Calibration of MIPS at 160 μm , 2007, 0707.2103.

[62]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[63]  N. Mcbride,et al.  Visible and Infrared Photometry of Six Centaurs , 1998 .

[64]  J. R. Spencer,et al.  The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur , 2007, 0704.1523.

[65]  Nicolas Thomas,et al.  ``TNOs are Cool'': A survey of the trans-Neptunian region . III. Thermophysical properties of 90482 Orcus and 136472 Makemake , 2010 .

[66]  R. H. Brown,et al.  Compositional Variation on the Surface of Centaur 8405 Asbolus , 2000 .

[67]  H. Rickman,et al.  Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .

[68]  Scott S. Sheppard,et al.  Hawaii Kuiper Belt Variability Project: An Update , 2003 .

[69]  Scott S. Sheppard,et al.  Light Curves of Dwarf Plutonian Planets and other Large Kuiper Belt Objects: Their Rotations, Phase Functions, and Absolute Magnitudes , 2007, 0704.1636.

[70]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[71]  E. L. Wright,et al.  NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS , 2011, 1109.6400.

[72]  M. Segura,et al.  A high-amplitude thermal inertia anomaly of probable magnetospheric origin on Saturn’s moon Mimas , 2011 .

[73]  S. Green,et al.  Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model , 2011, 1211.1844.

[74]  Michael Mommert,et al.  ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS , 2011 .

[75]  J. Pearl,et al.  Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements , 2010 .

[76]  T. Grav,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS , 2011, 1110.0280.

[77]  M. E. Brown,et al.  Tentative detection of the rotation of Eris , 2008, 0808.4130.

[78]  J. Klinger Influence of a Phase Transition of Ice on the Heat and Mass Balance of Comets , 1980, Science.

[79]  Rotation rates of Kuiper-belt objects from their light curves , 1999, Nature.

[80]  Paul Hartogh,et al.  Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft , 2012 .

[81]  J. Ortiz,et al.  Short-term rotational variability of eight KBOs from Sierra Nevada Observatory , 2006 .

[82]  A. Harris,et al.  2060 Chiron: CCD and electronographic photometry , 1989 .

[83]  Michael Mommert,et al.  TNOs are cool: A survey of the trans-Neptunian region. V. Physical characterization of 18 Plutinos using Herschel-PACS observations , 2012 .

[84]  D. Padgett,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration , 2007, 0704.2195.

[85]  David Jewitt,et al.  Densities of Solar System Objects from Their Rotational Light Curves , 2007 .

[86]  The Diverse Solar Phase Curves of Distant Icy Bodies. I. Photometric Observations of 18 Trans-Neptunian Objects, 7 Centaurs, and Nereid , 2006, astro-ph/0605745.

[87]  J. Bauer,et al.  Recovering the Rotational Light Curve of Phoebe , 2004 .

[88]  D. Allen Infrared Diameter of Vesta , 1970, Nature.

[89]  H. Matsuhara,et al.  ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI , 2012, 1211.2889.

[90]  D. Mitchell,et al.  Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm , 1994 .

[91]  M. Segura,et al.  PacMan returns: An electron-generated thermal anomaly on Tethys , 2012 .

[92]  A. Burgasser,et al.  THE SURFACE COMPOSITION OF LARGE KUIPER BELT OBJECT 2007 OR10 , 2011, 1108.1418.

[93]  B. Schmitt,et al.  The Ices on Transneptunian Objects and Centaurs , 2013 .

[94]  Michael E. Brown,et al.  Volatile Loss and Retention on Kuiper Belt Objects , 2007 .

[95]  A study of photometric variations on the dwarf planet (136199) Eris , 2008 .

[96]  J. Ortiz,et al.  Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.

[97]  M. E. Brown,et al.  Discovery of a Planetary-sized Object in the Scattered Kuiper Belt , 2005, astro-ph/0508633.

[98]  D. Prialnik,et al.  Monte Carlo Modeling of the Thermal Conductivity of Porous Cometary Ice , 2002 .

[99]  Marc William Buie,et al.  Near-Infrared Spectra of Icy Outer Solar System Surfaces: Remote Determination of H2O Ice Temperatures , 1999 .

[100]  Michael E. Brown,et al.  Direct Measurement of the Size of the Large Kuiper Belt Object (50000) Quaoar , 2004 .

[101]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[102]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[103]  A. Johansen,et al.  Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment , 2009, 0910.1524.

[104]  E. Vilenius,et al.  A portrait of the extreme solar system object 2012 DR30 , 2013, 1304.7112.

[105]  T. Grav,et al.  THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE , 2011 .

[106]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[107]  Stephen J. Keihm,et al.  Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping , 1984 .

[108]  Time-resolved photometry of kuiper belt objects: rotations, shapes and phase functions , 2002, astro-ph/0205392.

[109]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[110]  G. Rieke,et al.  The High-Albedo Kuiper Belt Object (55565) 2002 AW197 , 2005 .