Trajectory attractors for binary fluid mixtures in 3D

Two different models for the evolution of incompressible binary fluid mixtures in a three-dimensional bounded domain are considered. They consist of the 3D incompressible Navier-Stokes equations, subject to time-dependent external forces and coupled with either a convective Allen-Cahn or Cahn-Hilliard equation. Such systems can be viewed as generalizations of the Navier-Stokes equations to two-phase fluids. Using the trajectory approach, the authors prove the existence of the trajectory attractor for both systems.

[1]  Akira Onuki Phase transitions of fluids in shear flow , 1997 .

[2]  P. Fabrie,et al.  Persistency of 2D perturbations of one-dimensional solutions for a Cahn-Hilliard flow model under high shear , 2003 .

[3]  Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals , 2009, 0906.4802.

[4]  Franck Boyer,et al.  Mathematical study of multi‐phase flow under shear through order parameter formulation , 1999 .

[5]  T. Blesgen,et al.  A generalization of the Navier-Stokes equations to two-phase flows , 1999 .

[6]  V. S. Melnik,et al.  On Attractors of Multivalued Semi-Flows and Differential Inclusions , 1998 .

[7]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[8]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[9]  Yinnian He,et al.  Analysis of finite element approximations of a phase field model for two-phase fluids , 2006, Math. Comput..

[10]  Boo Cheong Khoo,et al.  An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model , 2007, J. Comput. Phys..

[11]  Ciprian G. Gal,et al.  LONGTIME BEHAVIOR FOR A MODEL OF HOMOGENEOUS INCOMPRESSIBLE TWO-PHASE FLOWS , 2010 .

[12]  David Jasnow,et al.  Coarse‐grained description of thermo‐capillary flow , 1996, patt-sol/9601004.

[13]  E. Feireisl,et al.  ANALYSIS OF A PHASE-FIELD MODEL FOR TWO-PHASE COMPRESSIBLE FLUIDS , 2010 .

[14]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[15]  Steve Shkoller,et al.  WELL-POSEDNESS AND GLOBAL ATTRACTORS FOR LIQUID CRYSTALS ON RIEMANNIAN MANIFOLDS , 2001, math/0101203.

[16]  Roberto Mauri,et al.  Diffuse-Interface Modeling of Phase Segregation in Liquid Mixtures , 2008 .

[17]  T. Caraballo,et al.  A Comparison between Two Theories for Multi-Valued Semiflows and Their Asymptotic Behaviour , 2003 .

[18]  V. Starovoitov The dynamics of a two-component fluid in the presence of capillary forces , 1997 .

[19]  Ciprian G. Gal,et al.  Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D , 2010 .

[20]  G. Sell,et al.  Dynamics of Evolutionary Equations , 2002 .

[21]  David Kay,et al.  Finite element approximation of a Cahn−Hilliard−Navier−Stokes system , 2008 .

[22]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[23]  V. S. Melnik,et al.  Addendum to “On Attractors of Multivalued Semiflows and Differential Inclusions” [Set-Valued Anal., 6 (1998), 83–111] , 2008 .

[24]  H. Abels,et al.  Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids , 2008, 0810.3987.

[25]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[26]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[27]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[28]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[29]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[30]  Eric D. Siggia,et al.  Late stages of spinodal decomposition in binary mixtures , 1979 .

[31]  V. Chepyzhov,et al.  Attractors for Equations of Mathematical Physics , 2001 .

[32]  N. Cutland Global attractors for small samples and germs of 3D Navier-Stokes equations , 2005 .

[33]  Angelo Morro,et al.  Phase-field models for fluid mixtures , 2007, Math. Comput. Model..

[34]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[35]  D. Nelson,et al.  Turbulence in Binary Fluid Mixtures. , 1981 .

[36]  Franck Boyer,et al.  Nonhomogeneous Cahn–Hilliard fluids , 2001 .

[37]  A. V. Kapustyan,et al.  Weak and strong attractors for the 3D Navier–Stokes system , 2007 .

[38]  On global attractors of the 3D Navier-Stokes equations , 2006, math/0608475.

[39]  Francisco Guillén-González,et al.  Reproductivity for a nematic liquid crystal model , 2006 .

[40]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[41]  John M. Ball,et al.  Erratum to: Continuity Properties and Global Attractors of Generalized Semiflows and the Navier-Stokes Equations , 1997 .

[42]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[43]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  L. Chupin Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation , 2002 .

[45]  F. Lin Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .

[46]  Songsong Lu Attractors for nonautonomous 2D Navier–Stokes equations with less regular normal forces☆ , 2006 .

[47]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  On non‐Newtonian incompressible fluids with phase transitions , 2006 .

[49]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[50]  E. Feireisl,et al.  On a diffuse interface model for a two-phase flow of compressible viscous fluids , 2008 .

[51]  V. Chepyzhov,et al.  Evolution equations and their trajectory attractors , 1997 .

[52]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[53]  Hongqing Wu,et al.  Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces , 2005 .

[54]  Helmut Abels,et al.  On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities , 2009 .

[55]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[56]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[57]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[58]  Hao Wu,et al.  Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids , 2009 .

[59]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[60]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[61]  Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations , 2003, math/0312141.

[62]  Francisco Guillén-González,et al.  Regularity and time-periodicity for a nematic liquid crystal model , 2009 .

[63]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[64]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[65]  Hao Wu,et al.  Long-time Behavior for Nonlinear Hydrodynamic System Modeling the Nematic Liquid Crystal Flows , 2009, 0904.0390.

[66]  F. Flandoli,et al.  Weak Solutions and Attractors for Three-Dimensional Navier–Stokes Equations with Nonregular Force , 1999 .

[67]  R. Temam Navier-Stokes Equations , 1977 .

[68]  Paul Glendinning,et al.  From finite to infinite dimensional dynamical systems , 2001 .

[69]  G. Sell Global attractors for the three-dimensional Navier-Stokes equations , 1996 .

[70]  Helmut Abels Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system , 2009 .

[71]  Thierry Colin,et al.  Semidiscretization in time for nonlinear Schrödinger-waves equations , 1998 .