Comparison of fast boundary element methods on parametric surfaces

We compare fast black-box boundary element methods on parametric surfaces in R3. These are the adaptive cross approximation, the multipole method based on interpolation, and the wavelet Galerkin scheme. The surface representation by a piecewise smooth parameterization is in contrast to the common approximation of surfaces by panels. Nonetheless, parametric surface representations are easily accessible from Computer Aided Design (CAD) and are recently topic of the studies in isogeometric analysis. Especially, we can apply two-dimensional interpolation in the multipole method. A main feature of this approach is that the cluster bases and the respective moment matrices are independent of the geometry. This results in a superior compression of the far field compared to other cluster methods.

[1]  Rob P. Stevenson,et al.  Wavelets with patchwise cancellation properties , 2006, Math. Comput..

[2]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[3]  Maharavo Randrianarivony,et al.  Wavelet BEM on molecular surfaces: parametrization and implementation , 2009, Computing.

[4]  W. Hackbusch,et al.  H 2 -matrix approximation of integral operators by interpolation , 2002 .

[5]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[6]  Klaus Gibermann,et al.  Multilevel approximation of boundary integral operators , 2001 .

[7]  Maharavo Randrianarivony,et al.  From Computer Aided Design to wavelet BEM , 2009, Comput. Vis. Sci..

[8]  Maharavo Randrianarivony,et al.  Wavelet BEM on molecular surfaces: solvent excluded surfaces , 2011, Computing.

[9]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[10]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[11]  Steffen Börm,et al.  Hybrid cross approximation of integral operators , 2005, Numerische Mathematik.

[12]  Christian Lage,et al.  Rapid solution of first kind boundary integral equations in R3 , 2003 .

[13]  T. Sauer,et al.  On multivariate Lagrange interpolation , 1995 .

[14]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[15]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[16]  Reinhold Schneider,et al.  Biorthogonal wavelet bases for the boundary element method , 2004 .

[17]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[18]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[19]  Steffen Börm,et al.  Approximation of boundary element operators by adaptive H2-matrices , 2003 .

[20]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[21]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[22]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[23]  Dieter Lasser,et al.  Grundlagen der geometrischen Datenverarbeitung , 1989 .

[24]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[25]  C. Schwab,et al.  Quadrature for $hp$-Galerkin BEM in ${\hbox{\sf l\kern-.13em R}}^3$ , 1997 .

[26]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[27]  T. Mansour,et al.  Combinatorics of Compositions and Words , 2009 .

[28]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[29]  M. Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation , 2006 .

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[32]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[33]  G. Constantine,et al.  A Multivariate Faa di Bruno Formula with Applications , 1996 .

[34]  C. Schwab,et al.  Quadrature for hp-Galerkin BEM in lR3 , 1997 .

[35]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[36]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .

[37]  P. Oswald,et al.  Multilevel norms forH−1/2 , 1998, Computing.