Sequential MCMC for Bayesian model selection

In this paper, we address the problem of sequential Bayesian model selection. This problem does not usually admit any closed-form analytical solution. We propose here an original sequential simulation-based method to solve the associated Bayesian computational problems. This method combines sequential importance sampling, a resampling procedure and reversible jump MCMC (Markov chain Monte Carlo) moves. We describe a generic algorithm and then apply it to the problem of sequential Bayesian model order estimation of autoregressive (AR) time series observed in additive noise.