Thermo-kinetic modelling of the acidic leaching of anorthosite: Key learnings toward the conception of a sustainable industrial process

[1]  F. Bourgeois,et al.  Insights Into Nickel Slag Carbonation in a Stirred Bead Mill , 2020, Frontiers in Chemical Engineering.

[2]  Chau‐Chyun Chen,et al.  Thermodynamic modeling of HCl-H2O binary system with symmetric electrolyte NRTL model , 2018, The Journal of Chemical Thermodynamics.

[3]  B. Friedrich,et al.  Phase characterization and thermochemical simulation of (landfilled) bauxite residue (“red mud”) in different alkaline processes optimized for aluminum recovery , 2018 .

[4]  G. Giraud,et al.  Global Trends in Metal Consumption and Supply: The Raw Material–Energy Nexus , 2017 .

[5]  D. Rowland,et al.  Thermodynamic Modeling of Aqueous Electrolyte Systems: Current Status , 2017 .

[6]  I. Burke,et al.  THEMATIC SECTION : BAUXITE RESIDUE VALORIZATION Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill , Hungary , 2016 .

[7]  Lara Duro,et al.  Andra thermodynamic database for performance assessment: ThermoChimie , 2014 .

[8]  F. Crundwell The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II Application of a new theory to silicates, aluminosilicates and quartz , 2014 .

[9]  S. Gíslason,et al.  Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22°C , 2014 .

[10]  Ž. Živković,et al.  ANFIS based prediction of the aluminum extraction from boehmite bauxite in the Bayer process , 2014 .

[11]  Nicolas Jacquemet,et al.  Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials , 2012 .

[12]  B. Garcia,et al.  Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2 , 2011 .

[13]  Y. Xiong Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): Interaction coefficients involving Cl, OH- and Ac- up to 200°C and 400 bars , 2006, Geochemical transactions.

[14]  C. Christov,et al.  Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO 4 -SO 4 -H 2 O system to high concentration and temperature 1 1Associate editor: D. J. Wesolowski , 2004 .

[15]  Marshall Rafal,et al.  Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes , 2002 .

[16]  Ingvi Gunnarsson,et al.  Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat , 2000 .

[17]  David,et al.  Compilation of Kinetic Data for Geochemical Calculations , 2000 .

[18]  D. G. Dixon The multiple convolution integral: A new method for modeling multistage continuous leaching reactors , 1996 .

[19]  S. Sjöberg Silica in aqueous environments , 1996 .

[20]  E. Oelkers,et al.  Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis , 1995 .

[21]  A. Felmy,et al.  A solubility model for amorphous silica in concentrated electrolytes , 1994 .

[22]  E. Oelkers,et al.  The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions , 1994 .

[23]  R. Mesmer,et al.  pH, Definition and measurement at high temperatures , 1992 .

[24]  K. E. Haque,et al.  Batch and counter-current acid leaching of uranium ore , 1987 .

[25]  P. Aarne Vesilind,et al.  The Rosin-Rammler particle size distribution , 1980 .

[26]  L. A. Bromley Thermodynamic properties of strong electrolytes in aqueous solutions , 1973 .

[27]  N. Herz Anorthosite Belts, Continental Drift, and the Anorthosite Event , 1969, Science.

[28]  R. Robinson,et al.  Some Aspects of the Thermodynamics of Strong Electrolytes from Electromotive Force and Vapor Pressure Measurements. , 1941 .