Analyzing natural convection in porous enclosure with polynomial chaos expansions: Effect of thermal dispersion, anisotropic permeability and heterogeneity

Abstract In this paper, global sensitivity analysis (GSA) and uncertainty quantification (UQ) have been applied to the problem of natural convection (NC) in a porous square cavity. This problem is widely used to provide physical insights into the processes of fluid flow and heat transfer in porous media. It introduces however several parameters whose values are usually uncertain. We herein explore the effect of the imperfect knowledge of the system parameters and their variability on the model quantities of interest (QoIs) characterizing the NC mechanisms. To this end, we use GSA in conjunction with the polynomial chaos expansion (PCE) methodology. In particular, GSA is performed using Sobol’ sensitivity indices. Moreover, the probability distributions of the QoIs assessing the flow and heat transfer are obtained by performing UQ using PCE as a surrogate of the original computational model. The results demonstrate that the temperature distribution is mainly controlled by the longitudinal thermal dispersion coefficient. The variability of the average Nusselt number is controlled by the Rayleigh number and transverse dispersion coefficient. The velocity field is mainly sensitive to the Rayleigh number and permeability anisotropy ratio. The heterogeneity slightly affects the heat transfer in the cavity and has a major effect on the flow patterns. The methodology presented in this work allows performing in-depth analyses in order to provide relevant information for the interpretation of a NC problem in porous media at low computational costs.

[1]  A. Baytaş Entropy generation for natural convection in an inclined porous cavity , 2000 .

[2]  George M. Homsy,et al.  Convection in a porous cavity , 1978, Journal of Fluid Mechanics.

[3]  T. Patzek,et al.  Effects of Geochemical Reaction on Double Diffusive Natural Convection of CO2 in Brine Saturated Geothermal Reservoir , 2014 .

[4]  Enrico Zio,et al.  Polynomial chaos expansion for global sensitivity analysis applied to a model of radionuclide migration in a randomly heterogeneous aquifer , 2013, Stochastic Environmental Research and Risk Assessment.

[5]  Carl Tim Kelley,et al.  Numerical simulation of water resources problems: Models, methods, and trends , 2013 .

[6]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[7]  P. Rattanadecho,et al.  Aqueous Humor Natural Convection of the Human Eye induced by Electromagnetic Fields: In the Supine Position , 2014 .

[8]  Laurens E. Howle,et al.  Natural convection in porous media with anisotropic dispersive thermal conductivity , 1988 .

[9]  M. Mansour,et al.  A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect , 2015 .

[10]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[11]  Ahmed Makradi,et al.  A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media , 2016 .

[12]  Suresh V. Garimella,et al.  Manifold microchannel heat sink design using optimization under uncertainty , 2014 .

[13]  H. Kooi,et al.  Variable density groundwater flow: from modelling to applications , 2010 .

[14]  R. M. Cotta,et al.  Integral transform methodology for convection-diffusion problems in petroleum reservoir engineering , 1995 .

[15]  Adrian Bejan,et al.  On the boundary layer regime in a vertical enclosure filled with a porous medium , 1979 .

[16]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[17]  Stefano Marelli,et al.  UQLab: a framework for uncertainty quantification in MATLAB , 2014 .

[18]  H. Z. Yu,et al.  Entropy generation due to three-dimensional double-diffusive convection of power-law fluids in heterogeneous porous media , 2017 .

[19]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[20]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[21]  J. Ni,et al.  NATURAL CONVECTION IN A VERTICAL ENCLOSURE FILLED WITH ANISOTROPIC POROUS MEDIA , 1991 .

[22]  C. Simmons Variable density groundwater flow: From current challenges to future possibilities , 2005 .

[23]  Mohammad Rajabi,et al.  Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations , 2015 .

[24]  R. Bennacer,et al.  Numerical and Analytical Analysis of the Thermosolutal Convection in an Heterogeneous Porous Cavity , 2012 .

[25]  P. Falsaperla,et al.  Double diffusion in rotating porous media under general boundary conditions , 2012 .

[26]  F. Schwartz,et al.  Multispecies Contaminant Plumes in Variable Density Flow Systems , 1995 .

[27]  B. Blackwell,et al.  A technique for uncertainty analysis for inverse heat conduction problems , 2010 .

[28]  P. Cheng,et al.  Transverse thermal dispersion and wall channelling in a packed bed with forced convective flow , 1988 .

[29]  A. Islam,et al.  Numerical investigation of double diffusive natural convection of CO2 in a brine saturated geothermal reservoir , 2013 .

[30]  I. Pop,et al.  Mixed convection in a square vented enclosure filled with a porous medium , 2006 .

[31]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[32]  R. Al-Khoury,et al.  Computational Modeling of Shallow Geothermal Systems , 2011 .

[33]  Alberto Guadagnini,et al.  Probabilistic assessment of seawater intrusion under multiple sources of uncertainty , 2015 .

[34]  P. Cheng,et al.  Thermal dispersion effects in non-Darcian convective flows in a saturated porous medium , 1981 .

[35]  C. Simmons,et al.  Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. , 2001, Journal of contaminant hydrology.

[36]  Kambiz Vafai,et al.  Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media , 1994 .

[37]  F. Kulacki,et al.  Natural convection across a vertical layered porous cavity , 1988 .

[38]  M. Mamourian,et al.  Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodology , 2016 .

[39]  M. S. Malashetty,et al.  Linear and Nonlinear Double-Diffusive Convection in a Fluid-Saturated Porous Layer with Cross-Diffusion Effects , 2011, Transport in Porous Media.

[40]  A. Younes,et al.  Extension of the Henry semi-analytical solution for saltwater intrusion in stratified domains , 2015, Computational Geosciences.

[41]  Gerard B. M. Heuvelink,et al.  Assessing uncertainty propagation through physically based models of soil water flow and solute transport , 2006 .

[42]  T. Mara,et al.  A new benchmark reference solution for double-diffusive convection in a heterogeneous porous medium , 2016 .

[43]  Alberto Guadagnini,et al.  Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory‐scale porous media , 2011 .

[44]  Bruno Sudret,et al.  Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model , 2015, Reliab. Eng. Syst. Saf..

[45]  Eduardo Ramos,et al.  Numerical study of natural convection in a tilted rectangular porous material , 1987 .

[46]  P. Cheng,et al.  Non-uniform porosity and thermal dispersion effects on natural convection about a heated horizontal cylinder in an enclosed porous medium , 1992 .

[47]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[48]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[49]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[50]  Thierry A. Mara,et al.  Use of Global Sensitivity Analysis to Help Assess Unsaturated Soil Hydraulic Parameters , 2013 .

[51]  Olaf Kolditz,et al.  Variable-density flow and transport in porous media: approaches and challenges , 2002 .

[52]  J. Carrera,et al.  Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak , 2015, Proceedings of the National Academy of Sciences.

[53]  O. A. Plumb,et al.  Non-darcy natural convection from heated surfaces in saturated porous media , 1981 .

[54]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[55]  N. W. Lanfredi,et al.  HP 67/97 calculator waves application programs , 1987 .

[56]  C. L. Tien,et al.  Analysis of thermal dispersion effect on vertical-plate natural convection in porous media , 1987 .

[57]  Laurent Trenty,et al.  A benchmark study on problems related to CO2 storage in geologic formations , 2009 .

[58]  E. Ooi,et al.  Effects of natural convection within the anterior chamber on the ocular heat transfer , 2011 .

[59]  Ioan Pop,et al.  Transient free convection in a square cavity filled with a porous medium , 2004 .

[60]  T. Basak,et al.  Studies on natural convection within enclosures of various (non-square) shapes – A review , 2017 .

[61]  P. Ackerer,et al.  Solving the advection–dispersion equation with discontinuous Galerkin and multipoint flux approximation methods on unstructured meshes , 2008 .

[62]  K. Vafai,et al.  Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology , 2017 .

[63]  Thierry A. Mara,et al.  Bayesian sparse polynomial chaos expansion for global sensitivity analysis , 2017 .

[64]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[65]  Kambiz Vafai,et al.  Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects – An exact solution , 2011 .

[66]  Christopher E. Kees,et al.  Mixed finite element methods and higher-order temporal approximations , 2002 .

[67]  Alberto Guadagnini,et al.  Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology , 2004 .

[68]  R. M. Cotta,et al.  Transient natural convection inside porous cavities : Hybrid numerical-analytical solution and mixed symbolic-numerical computation , 2000 .

[69]  Christoph Beckermann,et al.  A NUMERICAL STUDY OF NON-DARCIAN NATURAL CONVECTION IN A VERTICAL ENCLOSURE FILLED WITH A POROUS MEDIUM , 1986 .

[70]  D. Misra,et al.  A comparative study of porous media models in a differentially heated square cavity using a finite element method , 1995 .

[71]  Jesús Carrera,et al.  Anisotropic dispersive Henry problem , 2007 .

[72]  C. Simmons,et al.  The Henry problem: New semianalytical solution for velocity‐dependent dispersion , 2016 .

[73]  Behzad Ataie-Ashtiani,et al.  Sampling efficiency in Monte Carlo based uncertainty propagation strategies: Application in seawater intrusion simulations , 2014 .

[74]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[75]  Etienne de Rocquigny,et al.  Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods , 2012 .

[76]  Loic Le Gratiet,et al.  Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes , 2016, 1606.04273.

[77]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[78]  Muhammad R. Hajj,et al.  Release of stored thermochemical energy from dehydrated salts , 2011 .

[79]  S. Saha,et al.  Unsteady Natural Convection Within a Porous Enclosure of Sinusoidal Corrugated Side Walls , 2014, Transport in Porous Media.

[80]  C. E. Hickox,et al.  Application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium , 1986 .

[81]  Ioan Pop,et al.  Investigation of natural convection in triangular enclosure filled with porous medi saturated with water near 4 °C , 2009 .

[82]  H Harasaki,et al.  Sensitivity analysis of one-dimensional heat transfer in tissue with temperature-dependent perfusion. , 1997, Journal of biomechanical engineering.

[83]  Shahrouz Aliabadi,et al.  International Journal of C 2005 Institute for Scientific Numerical Analysis and Modeling Computing and Information a Slope Limiting Procedure in Discontinuous Galerkin Finite Element Method for Gasdynamics Applications , 2022 .

[84]  I. Pop,et al.  Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media , 2001 .

[85]  Marcos H. J. Pedras,et al.  Thermal dispersion in porous media as a function of the solid-fluid conductivity ratio , 2008 .

[86]  Wenqing Wang,et al.  Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking: Closed-Form Solutions , 2014 .

[87]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[88]  Ioan Pop,et al.  Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model , 2016 .

[89]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[90]  K. Vafai Handbook of porous media , 2015 .

[91]  Thomas Metzger,et al.  Optimal experimental estimation of thermal dispersion coefficients in porous media , 2004 .

[92]  A. Carotenuto,et al.  A new methodology for numerical simulation of geothermal down-hole heat exchangers , 2012 .

[93]  Horng-Wen Wu,et al.  Effects of Temperature-Dependent Viscosity on Natural Convection in Porous Media , 2015 .

[94]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[95]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[96]  C. Simmons,et al.  A discussion on the effect of heterogeneity on the onset of convection in a porous medium , 2007 .

[97]  Michael O'Sullivan,et al.  State-of-the-art of geothermal reservoir simulation , 2001 .

[98]  P. Bera,et al.  Natural Convection in an Anisotropic Porous Enclosure Due to Nonuniform Heating From the Bottom Wall , 2009 .

[99]  Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects , 2007 .

[100]  M. Fesanghary,et al.  Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm , 2009 .

[101]  I. Sobol,et al.  Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .

[102]  P. Huggenberger,et al.  Variable-density flow in heterogeneous porous media--laboratory experiments and numerical simulations. , 2009, Journal of contaminant hydrology.

[103]  Nawaf H. Saeid,et al.  Conjugate natural convection in a porous enclosure: effect of conduction in one of the vertical walls , 2007 .

[104]  D. A. Barry,et al.  Seawater intrusion processes, investigation and management: Recent advances and future challenges , 2013 .

[105]  Thierry A. Mara,et al.  A new benchmark semi-analytical solution for density-driven flow in porous media , 2014 .

[106]  L. Durlofsky Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities , 1994 .

[107]  Marios Sophocleous ReviewMicrocomputer applications in statistical hydrology: by Richard H. McCuen, 1993, Prentice Hall, New Jersey, 306 p., ISBN 0-13-585290-0, US $72.00 , 1993 .

[108]  M. Riley,et al.  Compositional variation in hydrocarbon reservoirs with natural convection and diffusion , 1998 .

[109]  Fluid dispersion effects on density-driven thermohaline flow and transport in porous media , 2013 .

[110]  Shuyuan Zhao,et al.  Effect of parameters correlation on uncertainty and sensitivity in dynamic thermal analysis of thermal protection blanket in service , 2015 .

[111]  R. Bennacer,et al.  Double diffusive convection in a vertical enclosure filled with anisotropic porous media , 2001 .

[112]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[113]  A. Younes,et al.  Solving density driven flow problems with efficient spatial discretizations and higher-order time integration methods , 2009 .

[114]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[115]  R. C. Givler,et al.  A determination of the effective viscosity for the Brinkman–Forchheimer flow model , 1994, Journal of Fluid Mechanics.

[116]  Vishwanath Prasad,et al.  CONVECTIVE HEAT TRANSFER IN A RECTANGULAR POROUS CAVITY - EFFECT OF ASPECT RATIO ON FLOW STRUCTURE AND HEAT TRANSFER. , 1984 .

[117]  D. Choi,et al.  Estimation of the thermal dispersion in a porous medium of complex structures using a lattice Boltzmann method , 2011 .

[118]  Martin A. Diaz Viera,et al.  Mathematical and Numerical Modeling in Porous Media: Applications in Geosciences , 2012 .

[119]  W. Minkowycz,et al.  Natural convection in a porous cavity saturated with a non-Newtonian fluid , 1996 .

[120]  A. Younes,et al.  A Reference Benchmark Solution for Free Convection in A Square Cavity Filled with A Heterogeneous Porous Medium , 2015 .

[121]  A. Younes,et al.  An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media , 2014 .