A statistical perspective to visual masking

[1]  L. M. M.-T. Theory of Probability , 1929, Nature.

[2]  H. Werner Studies on Contour: I. Qualitative Analyses , 1935 .

[3]  George Sperling,et al.  The information available in brief visual presentations. , 1960 .

[4]  Vision Research , 1961, Nature.

[5]  E. Averbach,et al.  Short-term memory in vision , 1961 .

[6]  M. Eden,et al.  Note on Short Term Storage of Information in Vision , 1964, Perceptual and motor skills.

[7]  Dean G. Purcell,et al.  U-shaped masking functions in visual backward masking: Effects of target configuration and retinal position , 1970 .

[8]  D. Ebbeler On the Probability of Correct Model Selection Using the Maximum R2 Choice Criterion , 1975 .

[9]  R. R. Hocking The analysis and selection of variables in linear regression , 1976 .

[10]  R. Haber The impending demise of the icon: A critique of the concept of iconic storage in visual information processing , 1983, Behavioral and Brain Sciences.

[11]  T. Bachmann The process of perceptual retouch: Nonspecific afferent activation dynamics in explaining visual masking , 1984, Perception & psychophysics.

[12]  A. Wilson,et al.  Transposition in backward masking the case of the travelling gap , 1985, Vision Research.

[13]  D. Hofer,et al.  Metakontrast: ein berühmtes, aber schwer messbares Phänomen , 1989 .

[14]  J. Duncan,et al.  On the time course of perceptual information that results from a brief visual presentation. , 1992, Journal of experimental psychology. Human perception and performance.

[15]  G. Sperling,et al.  Information transfer in iconic memory experiments. , 1993, Journal of experimental psychology. Human perception and performance.

[16]  Christoph Zetzsche,et al.  A model of visual spatio-temporal memory: The icon revisited , 1995, Psychological research.

[17]  O. Neumann,et al.  Manual and Verbal Responses to Completely Masked (Unreportable) Stimuli: Exploring Some Conditions for the Metacontrast Dissociation , 1998, Perception.

[18]  O. Neumann,et al.  Motor activation without conscious discrimination in metacontrast masking. , 1999 .

[19]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[20]  B. Breitmeyer,et al.  Recent models and findings in visual backward masking: A comparison, review, and update , 2000, Perception & psychophysics.

[21]  G Francis,et al.  Quantitative theories of metacontrast masking. , 2000, Psychological review.

[22]  J. Enns,et al.  What’s new in visual masking? , 2000, Trends in Cognitive Sciences.

[23]  C Koch,et al.  Seeing properties of an invisible object: Feature inheritance and shine-through , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[25]  T. Schmidt The Finger in Flight: Real-Time Motor Control by Visually Masked Color Stimuli , 2002, Psychological science.

[26]  J. Enns Visual binding in the standing wave illusion , 2002, Psychonomic bulletin & review.

[27]  J. Schwarzbach,et al.  Different time courses for visual perception and action priming , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[29]  T. Pasternak,et al.  Working memory in primate sensory systems , 2005, Nature Reviews Neuroscience.

[30]  S. Kay Exponentially embedded families - new approaches to model order estimation , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Nelson Cowan,et al.  Working Memory Capacity , 2005 .

[32]  Thomas U. Otto,et al.  The flight path of the phoenix--the visible trace of invisible elements in human vision. , 2006, Journal of vision.

[33]  Haluk Öğmen,et al.  Perceptual grouping induces non-retinotopic feature attribution in human vision , 2006, Vision Research.

[34]  Ione Fine,et al.  Face adaptation does not improve performance on search or discrimination tasks. , 2008, Journal of vision.

[35]  S. Luck,et al.  Discrete fixed-resolution representations in visual working memory , 2008, Nature.

[36]  Thomas U. Otto,et al.  Assessing the microstructure of motion correspondences with non-retinotopic feature attribution. , 2008, Journal of vision.

[37]  Paul M Bays,et al.  The precision of visual working memory is set by allocation of a shared resource. , 2009, Journal of vision.

[38]  N. Cowan,et al.  The Magical Mystery Four , 2010, Current directions in psychological science.

[39]  E. Vogel,et al.  Discrete capacity limits in visual working memory , 2010, Current Opinion in Neurobiology.

[40]  Srimant P Tripathy,et al.  High-capacity, transient retention of direction-of-motion information for multiple moving objects. , 2010, Journal of vision.

[41]  Frans W Cornelissen,et al.  Comparing crowding in human and ideal observers. , 2012, Journal of vision.

[42]  Wei Ji Ma,et al.  Variability in encoding precision accounts for visual short-term memory limitations , 2012, Proceedings of the National Academy of Sciences.

[43]  Haluk Öğmen,et al.  Non-retinotopic feature processing in the absence of retinotopic spatial layout and the construction of perceptual space from motion , 2012, Vision Research.

[44]  Jeffrey N. Rouder,et al.  Default Bayes factors for ANOVA designs , 2012 .

[45]  Duong Huynh,et al.  Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model , 2013, PloS one.

[46]  Edward F. Ester,et al.  Substitution and pooling in visual crowding induced by similar and dissimilar distractors. , 2015, Journal of vision.