Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance

We report on a green-pumped continuous-wave singly resonant optical parametric oscillator (cw SRO) based on MgO-doped periodically poled LiNbO3. Operating the SRO at crystal temperatures between 40.0°C to 80.0°C an idler wavelength range of 1406–1451 nm can be accessed. The system provides stable single-frequency idler radiation of more than 300 mW at a pump power of 2 W while featuring a low threshold (<1.2 W). Above a pump power of 2.1 W we observe multimode operation, which is similar to the behavior reported for infrared-pumped SROs. To show the applicability of the device we demonstrate Doppler-free saturation spectroscopy of the cesium D2 line using the signal wave and frequency stabilization to a crossover resonance of the D2 transition.

[1]  S. Chaitanya Kumar,et al.  Fiber-laser-pumped, high-power, continuous-wave, singly-resonant optical parametric oscillator based on MgO:sPPLT , 2007, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[2]  Ingo Breunig,et al.  Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators , 2009 .

[3]  F. Bretenaker,et al.  Stimulated Raman scattering in an optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3. , 2009, Optics express.

[4]  V Dierolf,et al.  Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals. , 2009, Optics express.

[5]  Hee Su Park,et al.  Continuous-wave 532 nm pumped MgO:PPLN optical parametric oscillator with external power regulation and spatial mode filtering. , 2009, Applied optics.

[6]  Stefan Persijn,et al.  Thermal effects in singly resonant continuous-wave optical parametric oscillators , 2009 .

[7]  Z. Ou Efficient conversion between photons and between photon and atom by stimulated emission , 2008 .

[8]  Ady Arie,et al.  Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 , 2008 .

[9]  C. Clark,et al.  Magic wavelengths for the np-ns transitions in alkali-metal atoms , 2007, 0709.0130.

[10]  G. K. Samanta,et al.  1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT. , 2007, Optics letters.

[11]  A. Henderson,et al.  Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator. , 2007, Optics letters.

[12]  F. Bretenaker,et al.  High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red. , 2007, Optics letters.

[13]  A. Henderson,et al.  Intra-cavity power effects in singly resonant cw OPOs , 2006 .

[14]  N. Gisin,et al.  A photonic quantum information interface , 2005, Nature.

[15]  Tetsumi Sumiyoshi,et al.  Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3 , 2004 .

[16]  S. E. Bisson,et al.  Continuous-wave operation of a single-frequency optical parametric oscillator at 4–5 μm based on periodically poled LiNbO 3 , 2003 .

[17]  S. Porsev,et al.  Determination of lifetimes of 6 P J levels and ground-state polarizability of Cs from the van der Waals coefficient C 6 , 2002 .

[18]  K. Boller,et al.  Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator. , 2001, Optics letters.

[19]  R. Conroy,et al.  All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy. , 2001, Optics letters.

[20]  C. Braxmaier,et al.  High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator. , 2001, Optics letters.

[21]  M. Fejer,et al.  Green-induced infrared absorption in MgO doped LiNbO3 , 2001 .

[22]  K. Kitamura,et al.  Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations , 2000 .

[23]  Theodor W. Hänsch,et al.  Absolute optical frequency measurement of the cesium D 2 line , 2000 .

[24]  R Wallenstein,et al.  Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave. , 2000, Optics letters.

[25]  J. Cirac,et al.  Quantum communication between atomic ensembles using coherent light. , 2000, Physical review letters.

[26]  A. E. Livingston,et al.  Fast-beam laser lifetime measurements of the cesium 6p[sup 2]P[sub 1/2,3/2] states , 1999 .

[27]  S. Schiller,et al.  Long-term stable operation and absolute frequency stabilization of a doubly resonant parametric oscillator , 1998 .

[28]  F. G. Major The Quantum Beat: Principles and Applications of Atomic Clocks , 1998 .

[29]  M. Fejer,et al.  Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. , 1998, Optics letters.

[30]  Takashi Kondo,et al.  Absolute scale of second-order nonlinear-optical coefficients , 1997 .

[31]  R. Byer,et al.  93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator. , 1996, Optics letters.

[32]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[33]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[34]  G. Boyd,et al.  Parametric interaction of focused Gaussian light beams , 1968 .

[35]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .