Robust design of biological experiments

We address the problem of robust, computationally-efficient design of biological experiments. Classical optimal experiment design methods have not been widely adopted in biological practice, in part because the resulting designs can be very brittle if the nominal parameter estimates for the model are poor, and in part because of computational constraints. We present a method for robust experiment design based on a semidefinite programming relaxation. We present an application of this method to the design of experiments for a complex calcium signal transduction pathway, where we have found that the parameter estimates obtained from the robust design are better than those obtained from an "optimal" design.

[1]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[2]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[3]  A. R. Zinsmeister,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, by G. E. P. Box, W. G. Hunter, and J. S. Hunter , 1981 .

[4]  E. Walter,et al.  Robust experiment design via maximin optimization , 1988 .

[5]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[6]  D. M. Titterington,et al.  Recent advances in nonlinear experiment design , 1989 .

[7]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[8]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[9]  A. Atkinson The Usefulness of Optimum Experimental Designs , 1996 .

[10]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[11]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[12]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[13]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[14]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[15]  G. Lemon,et al.  Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation. , 2003, Journal of theoretical biology.

[16]  G. Lemon,et al.  Metabotropic receptor activation, desensitization and sequestration-II: modelling the dynamics of the pleckstrin homology domain. , 2003, Journal of theoretical biology.

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.